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Abstract

Purpose: Utilizing machine learning technologies to monitor assets’ health conditions can improve
the effectiveness of maintenance activities. However, accurately recognizing the current health degra-
dation stages of industrial assets requires a time-consuming manual feature extraction due to
the wide range of observable measures (e.g. temperature, vibration) and behaviors characterizing
assets’ degradation. To address this issue, feature learning technology can transform minimally
processed time series into informative features, i.e. able to simplify the classification task (e.g.
recognizing degradation stages) regardless of the specific machine learning classifier employed.
Methods: In this work, minimally preprocessed time series of vibration and tempera-
ture of industrial bearings are exploited by an autoencoder-based architecture to extract
degradation-representative features to be used for recognizing their degradation stages. Dif-
ferent autoencoder architectures are employed to compare their data fusion strategies. The
effectiveness of the proposed approach is evaluated in terms of recognition performance
and the quality of the learned features by using a publicly available real-world dataset
and comparing the proposed approach against a state-of-the-art feature learning technology.
Results: We tested three different multimodal autoencoder-based feature learning
approaches, i.e. shared-input autoencoder (SAE), multi-modal autoencoder (MMAE),
and partition-based autoencoder (PAE). All the AE-based architecture results in clas-
sification performances greater or comparable with the state-of-the-art feature learning
technology, despite being trained in an unsupervised fashion. Also, the features provided
via PAE correspond to the greatest performances in recognizing bearings’ degradation
stage, providing high-quality features both from a classification and clustering perspective.
Conclusion: Unsupervised feature learning methodologies based on multimodal autoencoders are
capable of learning high-quality features. Those results in greater degradation stages recogni-
tion performances when compared to supervised state-of-the-art feature learning technology. Also,
this enables the correct representation of the expected progressive degradation of the bearing.
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1 Introduction

According to the Industry 4.0 paradigm, industrial
processes can be remarkably improved by using
machine learning [1–3]. For instance, machine
learning techniques can be employed to provide
the so-called Predictive Maintenance (PdM) [4].
PdM aims at assessing the current degradation
state of industrial assets to perform maintenance
operations just before the breaking point. If com-
pared to reactive maintenance (i.e. fix after a
failure) and preventive maintenance (fix periodi-
cally), PdM allows for avoiding failures while fully
exploiting the whole remaining useful life (RUL)
of an asset’s component [5].

Since RUL are greatly influenced by asset
usage while in an unhealthy stage, its predic-
tion is often unreliable. Thus, degradation stage
estimations are often preferred RUL estimates in
real-world applications [6]. A trade-off between
interpretability and complexity determines the
number of stages used to characterize the degrada-
tion process. For instance, a few easy-to-interpret
stages can be used to describe a degradation pro-
cess that is consistent and progressive. Most of the
research works [6] employs three [7], four [8], or
even five stages [9] to characterize the degradation
process.

Moreover, PdM approaches need to be pro-
vided with some features (e.g., statistical mea-
sures) extracted from some measurements (e.g.
temperature, vibration, acoustic noise) that needs
to be informative about the degradation process.
However, due to the many measures that can be
taken into account, and the diversity of degra-
dation processes across industries and machines,
it is difficult to have a feature extraction process
that is generalizable across various PdM applica-
tions [10]. As a result, choosing and transform-
ing such measurements into informative features
requires intensive and time-consuming collabora-
tions between data scientists and maintenance
experts.

Thus, more automatic and adaptive feature
extraction processes are required in the PdM
context [11]. Those can be obtained by using
feature learning technology [12]. Feature learning
approaches automatically transform minimally
processed data into informative features aimed at
simplifying the classification tasks [13, 14]. Prior
domain knowledge, such as which features include

or exclude for the analysis of a specific measure,
is not required with feature learning.

This is especially convenient when employ-
ing multiple and heterogeneous sources [6], which
would require a specific preprocessing and fea-
ture extraction for each one of them. The need
for multi-modal approaches for PdM is indeed
emphasized in different recent surveys such as [15].

In this context, deep learning approaches can
provide a higher-level representation of the inputs
that can be used as features in a classifica-
tion problem. Moreover, by being characterized
by hierarchically stacked nonlinear modules, deep
learning approaches allows the processing of data
from different modalities simultaneously to pro-
vide some sort of information fusion. Indeed,
many multi-modal feature learning approaches are
implemented via deep learning technology [16],
and especially via deep autoencoders (AE) [10].

This study compares different unsupervised
AE-based architectures for multi-modal feature
learning, each one implementing a different data
fusion strategy. The quality of the learned fea-
tures and degradation stage recognition perfor-
mances are also compared against the classic
feature extraction process and the state-of-the-
art technology in supervised feature learning. The
proposed approach has been tested on a well-
known PdM benchmark dataset consisting of 3
real-world cases study addressing the degradation
of industrial bearings.

The paper is structured as follows. In section
2, the literature review is presented. Section 3
details the proposed approach. The case study and
the experimental setup are presented in section
4. Finally, sections 5 and 6 discuss the obtained
results and the conclusions, respectively.

2 Related works

This section presents a survey of the state-of-the-
art addressing feature learning approaches.

Principal component analysis (PCA) and Lin-
ear discriminant analysis (LDA) can be considered
the first feature learning algorithms [16], and
were originally designed for dimensionality reduc-
tion. The first approaches able to map the data
into a higher dimensional space was the kernel
version of those linear dimensionality reduction
algorithms, i.e. kernel PCA (KPCA) [17] and gen-
eralized discriminant analysis (GDA) [18], which
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are the kernel version of PCA and LDA, respec-
tively. Those feature learning algorithms, either
linear or nonlinear, belong to the shallow learning
paradigm. Since the early 2000s, many deep-
learning approaches have been proposed to learn
informative data representations. Those can result
in better abstractions of the original data for sub-
sequent classification tasks if compared to shallow
learning approaches [19].

By consisting of a stack of layers of artificial
neurons, deep learning architecture intrinsically
distill high-level information (i.e. features) by per-
forming non-linear combinations of the input data
[20, 21]. Specifically, the inputs provided to the
architecture are processed by each layer to the
next one. The intermediate information represen-
tations between two layers (i.e. the so-called latent
space), can also be used as features in the following
recognition task [22].

In this context, generative adversarial net-
works (GANs) and autoencoders (AEs) are among
the most used deep learning architecture for fea-
ture learning [23].

GANs [24] were originally designed for data
generation and are made of two neural networks:
a generator (G) and a discriminator (D). G is not
informed about the distribution of the real data,
and aims to generate fake data to fool D. D aims
to discriminate fake data generated by G from the
real ones. Once trained, G can be used for data
generation. Recently, GANs and their variants are
also used for feature learning [25]. For instance,
BiGAN [26], is a GAN specifically designed to
learn the latent representation of the data. Unfor-
tunately, the use of random noise as input for the
G network makes GAN’s learning projection to be
unpredictable [27].

An AE consists of two neural networks trained
in an end-to-end fashion: the encoder works as a
bottleneck to obtain a compact representation of
the inputs, whereas the decoder reconstructs the
input data using such a compact representation.
By using a loss function aimed at maximizing the
similarity between its input and output, the AE
does not need any labeled data to be trained and
thus it is an unsupervised approach. By embed-
ding enough information to reconstruct the whole
input, the compact representations provided by
the trained encoder are considered informative
enough to be used as features for classification

tasks. Together with this feature learning capabil-
ity, some autoencoder architecture can also fuse
multi-sensory data [28]. Specifically, AE-based
approaches can provide multimodal-data fusion at
3 different levels [22]:

• At data-level, the AE processes the concatena-
tion of the original input data for each modality
and provides a single multi-modal representa-
tion for both of them [29].

• At architecture-level, the AE processes the input
of each modality independently, but the last
layers of the encoder are shared among dif-
ferent modalities and thus provide a single
multi-modal representation [30].

• At representation-level, there are two indepen-
dent AE processing the input of each modality.
The obtained representations are then concate-
nated to obtain a single multi-modal represen-
tation [31].

For instance, in [32] different multi-modal AE
approaches for handling both audio and video
inputs are compared. In this context, the so-
called shared modality AE concatenates multi-
modal features as input and reconstructs those
together (data-level fusion), whereas the multi-
modal AE consists of a multi-input-multi-output
network (Architecture-level fusion), in which each
modality is provided and reconstructed separately
while being processed together by the network.
As emerged from the analysis in [33], the capa-
bility of handling and fusing different modalities
while providing feature learning is highly required
to improve the recognition performances, espe-
cially in a fault detection scenario. In this regard,
the authors in [34] propose a deep coupling
autoencoder (DCAE) to process vibration and
acoustic data to obtain a multimodal representa-
tion to be used for fault diagnosis. Specifically,
a coupling autoencoder (CAE) is constructed to
couple the hidden representations of two single-
modal autoencoders obtaining a joint representa-
tion between different multimodal sensory data,
and then a DCAE model is devised for learning
the joint higher-level feature.

Alternatively, to unsupervised feature learning
approaches based on AE, a neural network can
provide feature learning also in a supervised fash-
ion, employing specifically designed loss functions.
For instance, the multi-similarity loss is aimed
at learning a higher-level data representation in
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the latent space of a neural network by maximiz-
ing the separability of the learned representations
clustered for the target classes. This approach
can be exploited to learn features that can be
used to recognize the degradation state of an
industrial component from its time series [3]. An
implementation of the multi-similarity loss is pro-
vided by Tensorflow Similarity [35] and represents
the state-of-the-art learning features for similar-
ity ranking problems. In the following the feature
extraction approach based on multi-similarity loss
will be referred to as the similarity-based encoder.

3 Design

In this section, the design of the proposed
approach is detailed. It consists of three functional
modules, i.e. data preparation, feature extraction,
and degradation stage classification (Fig. 1).

Fig. 1 Architecture of the proposed approach consisting
of three functional modules.

Both the vibration and temperature time series
are minimally pre-processed via the data prepara-
tion module. Firstly, each time series is segmented
and associated with a degradation stage label
(more on the labeling of each segment in Section
4). To do so, 30 seconds semi-overlapping time
windows are employed as a reference for the seg-
mentation process. Unlike the temperature, the
vibration is characterized by a strong fluctuat-
ing behavior. Thus, its informativeness is typically
extracted in the frequency domain rather than in
the time domain [36, 37]. For this reason, the data
preparation module processes the segments of the
vibration time series by transforming those via
the discrete Fourier transform evaluated comput-
ing the fast Fourier transform with N equal to the

length of the input signal; then the real and the
imaginary part of the signal where stored; also
the probability density function and the kurto-
sis of each input signal were evaluated. Following
a model centric approach, no further assumption
has been made about the range of informative
frequencies. In fact, the tested features learning
algorithm (SE, AE, PAE, MAE) share the abil-
ity to autonomously learn the informative part of
the input data [13]. Doing this, the system is in
charge, during training, to find and exploit such
information allowing it to be suitable for different
types of bearings with different frequency failures’
rates.

The segments of the temperature time series
and the discrete Fourier transform of the vibration
segment are treated as numerical arrays and split
into 128 semi-overlapped sub-parts each. For each
sub-part, we compute the average and standard
deviation. Then we concatenate and rescale their
values between 0 and 1 via a min-max procedure.
In essence, the data preparation module provides
four numerical arrays of 128 elements for each
30 seconds observation: two arrays are obtained
via the discrete Fourier transform of the vibration
signal and two via the temperature one.

The feature extraction module employs an
approach based on AEs to process the out-
put of the data preparation module and learn
degradation-representative features. As intro-
duced in Section 2, AE-based architectures can
provide different data fusion strategies. Specifi-
cally:

• the shared-input autoencoder (SAE) provides
data-level fusion, i.e. concatenates the input of
each modality, and then processes them via an
autoencoder to learn a multimodal representa-
tion (Fig. 2.a)

• the multimodal autoencoder (MMAE) provides
architecture-level data fusion, i.e. the input of
each modality feeds a distinct part of the AE’S
neural network; the multimodal representation
is obtained by combining the processing of the
inputs via some shared layers of neurons (Fig.
2.b)

• the partition-based autoencoder (PAE) provides
representation-level data fusion, i.e. processes
the input for each modality via different autoen-
coders and concatenate the representations
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obtained from each one of them to have a
multimodal representation (Fig. 2.c).

Fig. 2 exemplifies the above-described multi-
modal feature learning strategies. The processing
of the inputs of each modality is colored in yellow
or blue. The dashed box highlights the modalities
fusion phase. In dark green, we represent the AE
components that work in a multimodal fashion.

Fig. 2 Autoencoder-based multimodal feature learning
approaches, i.e. shared-input autoencoder (a), multi-modal
autoencoder (b), and partition-based autoencoder (c). In
blue and yellow are the parts of the autoencoder that work
with one single modality. The dashed box highlights the
modalities-fusion phase.

Once trained, the feature extraction module
can provide the codes (or their concatenation) as a
multi-modal representation of the inputs for each
modality. Such representation will be used as a
feature for the degradation stage classifier.

As specified in Section 1, To test this capa-
bility, the proposed approach uses a number of
different classifier, as provided by the well-known
Python library scikit− learn [38].

4 Experimental setup

In this section, the experimental dataset and the
experimental setup are described. This is used for
the evaluation of the effectiveness of the proposed
approach.

In our experiments, we employ a publicly
available dataset obtained via the experimental
platform Pronostia [39]. The platform provides the

Fig. 3 The Pronostia plaform [39].

progressive degradation of real-world industrial
bearings and collects the time series of vibration
(25.6 kHz) and temperature (10 Hz) during the
degradation process. The Pronostia dataset com-
prises three distinct cases of study denoted as B11,
B12, and B21 [39], each corresponding to different
bearings (indicated by the second number in the
case of study name) and bearing operating condi-
tions. The initial digit in the case of study name
delineates the operating condition of the bearing:
B1X pertains to conditions between 1800 rpm and
4000 N, while B2X relates to conditions between
1650 rpm and 4200 N.

The time series are segmented into semi-
overlapping time windows with a duration of 30
seconds, and associated with the corresponding
degradation stage label. In this study, the degra-
dation stages taken into account are three: regular,
degraded, and critical. To determine the time
points at which the degradation stage shifts, the
vibration time series is examined. Specifically, the
instant in which the vibration results consistently
equal to or greater than 1 g is considered as the
transition between regular and degraded health
stages [31]. When in the degraded health stage,
the instant in which the Root Mean Square of
the vibration suddenly increase is considered the
transition from the degraded to the critical health
stage [40]. More details about this labeling pro-
cedure are provided in [31]. In Table 1 we report
the resulting number of time series segments (and
so instances) for each case study and degradation
stage.
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Table 1 Instances per class and case study.

Degradation stage B11 B12 B21
Regular 1871 748 753
Degraded 1665 319 371
Critical 181 73 74

As per the results in [3], all the AE-based archi-
tectures used in this study are characterized by
the mean absolute error as training loss, 128 as
batch size, Relu as activation function, Adam as an
optimization algorithm, and a symmetric decoder
and encoder. It means that their neural networks
consist of the same number of layers and inverted
layers’ order. The encoder (decoder) features four
layers consisting of 128, 64, 32, and 16 (16, 32, 64,
and 128) artificial neurons respectively. The multi-
modal encoder features the same number of layers
and neurons for each modality, except for the most
internal layer (i.e. the one with 16 neurons). This
layer is indeed replaced with three layers (consist-
ing of 64, 32, and 16 neurons) shared among both
modalities. The number of neurons of the input
(output) layer of the encoder (decoder) varies to
fit the input length, e.g. SAE’s input is twice as
long as PAE’s one. This allows us to have a com-
parable number of trainable parameters for each
AE-based feature extraction module.

The proposed approach is compared to a
state-of-the-art feature learning approach, i.e. the
multi-similarity loss. As mentioned in Section 2, in
September 2021 the implementation of the multi-
similarity loss has been released by Google via the
package Tensorflow Similarity. Specifically, the
loss function provided by Tensorflow Similarity
considers the similarity, measured as the inverse
of the Euclidean distance, between the representa-
tion of three data points in the latent space i.e. the
anchor (A), the positive (P), and the negative (N).
P (N) is chosen among the samples in the batch
characterized by the same (different) class with
respect to A. The neural network is trained to pro-
gressively reduce the distances between A and P,
and increase the distance between A and N, result-
ing in a difference between these two distances
greater than a given margin for all the train-
ing samples. Unlike AE-based approaches, this
feature learning approach is supervised and specif-
ically designed to disentangle instances of different
classes in the latent space. This should correspond
to an improved performance for the subsequent

recognition task, at the cost of increased training
time, as demonstrated in [3].

As evident from Table 1, the classes in
our degradation stage classification problem are
unbalanced, i.e. the more sever the degradation
stage, the fewer the instances in the dataset. For
this reason, the classification performance is mea-
sured in terms of F1-score [41], i.e. the harmonic
mean of precision and recall (Eq. 1).

Given one class to recognize, the precision is
the ratio between the number of true positives
(i.e. samples correctly recognized as that class)
and the number of all positives (i.e. all the sam-
ples recognized as that class). The recall instead,
is the ratio between the number of true positives
and the sum of true positives and false negatives,
i.e. the number of all samples that should have
been identified as belonging to that class. Since
our classification problem features three different
classes, the average F1-score among all the classes
(i.e. the global F1 score) is considered the main
recognition performance measure. The F1-score is
bounded between 0 and 1. An F1-score equal to
1, means that are no false positives (e.g. a criti-
cal stage recognized as a regular one), and false
negatives (e.g. a regular stage recognized as a crit-
ical one). An F1-score equal to 0 means that if
either the precision or the recall is zero, i.e., there
are no true positives (e.g. a correctly recognized
degradation stage). For the sake of readability, the
F1-score is presented as a percentage, i.e. bounded
between 0 % (worst case) and 100% (best case).

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(1)

To test if the learned features are informative
regardless of the machine learning approach used
for the classification, in our experimentation we
employ six different classifiers provided by scikit−
learn, specifically:

• KNeighborsClassifier [3] (KNN), an ML classi-
fier that determines the class for a new sample
according to the class of a given number of
closest training samples;

• LinearDiscriminantAnalysis [42] (LDA), an ML
classifier that employs Bayes’ rule and class
conditional densities to determine a linear deci-
sion boundary to separate samples in different
classes;
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• Support Vector Machine [43](SVM), a kernel-
based ML classifier aimed at predicting highly
calibrated class membership probabilities;

• ExtraTreesClassifier [44] (ET), GradientBoost-
ingClassifier [43] (GB), and RandomForestClas-
sifier [45] (RF), three ML classifiers based on
ensembles of decision trees that are well-known
for their fast convergence and great classifica-
tion performances.

A feature can be considered informative if
it eases the separation of the instances among
classes, thus improving the performance of the
classification task [46]. In this regard, clustering
quality metrics can be employed to measure how
well the learned features space separates differ-
ent classes. Indeed, previous studies such as [47]
and [48] find that such separability may actually
correlate with the final classification accuracy.

In this context, the so-called Silhouette Coef-
ficient, or silhouette score, quantifies how similar
an object is to its own cluster compared to other
clusters. The silhouette score ranges in [−1,+1],
where a high value indicates that the object is well
matched to its own cluster and poorly matched to
neighboring clusters. For a given sample i ∈ CI ,
where C1, C2 ... CN ∈ D are the sets of different
clusters in the dataset D; the silhouette score of i
can be computed as:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (2)

In Eq. 2, a(i) is the mean-distance between i and
all the elements of its cluster CI , whereas b(i)
is the smallest mean-distance of i to all the ele-
ments in any other cluster. In our study, each class
(e.g. degradation stage) is made to correspond to
a cluster in the silhouette score calculation.

a(i) =
1

∥CI∥ − 1

∑
j∈CI ,i̸=j

d(i, j)

b(i) = min
J ̸=I

1

∥CJ∥
∑
j∈CJ

d(i, j)

(3)

We also provide visualizations of the instances
in the learned feature space to qualitatively eval-
uate the class separability. Due to the multidi-
mensionality of the learned feature space, it is
challenging to graphically represent it. Thus, to
this aim, we employ the projections along the
three principal components’ directions. Although

this projection is useful for qualitative analy-
sis and visualization, it may not fully capture
the actual closeness between the instances in the
feature space [49].

Our experimental results are presented as aver-
age socres obtained via a stratified Monte Carlo
10 cross-fold validation schema.

5 Results

In the following, the different feature extraction
approaches are shortened as follows: partition-
based autoencoder (PAE), shared-input autoen-
coder (SAE), multi-modal autoencoder (MMAE),
similarity-based encoder (SE).

We evaluated the quality of the features
learned by our unsupervised autoencoder-based
architectures (PAE, SAE and MAE) in compari-
son with the supervised one (SE) by showing the
classification perfomances (F1-score) of different
ML classifiers which take as input the features
learned by the different types of encoders, in
the recognition of the degradation stages ”regu-
lar”, ”degraded”, and ”critical”. These results are
shown in Tab 2.

The effectiveness of the proposed architecture
was also evaluated on a more complex classifica-
tion task, i.e. with a larger number of degradation
stages. To do so, the degradation stages ”regular”
and ”degraded” were split (i.e. considering half of
their duration) into two stages each, resulting in
a five-stage bearing degradation recognition. The
classification performance achieved with each vari-
ant of the proposed approach is documented Tab
2.

As per results in Tab 2, the combination of the
boosting-based approaches ( i.e. ET, GB and RF)
with PAE learned features outperform the non-
boosting based approaches (i.e. KNN, LDA and
SVM). In particular for the B11 case of study, GB
achieves 99,44% F1-score in 3 degradation stages
classification; while RF achieves 98,44% for 5
stages classification. For B12, ET achieves 95,25%
F1-score in 3 degradation stages classification and
92,54% in 5 stages classification. For B21, GB
and RF achieve 99,17% F1-score in 3 degradation
stages classification using PAE’s features; while
ET achieves 96,08% for 5 stages classification.

Moreover the boosting based approaches share
better overall performances if we consider the fea-
tures learned by SAE, PAE and MMAE, with
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Table 2 Average % F1-Score obtained for all the case of study ( B11, B12, and B21 ) with multiple approaches for the 3-
and 5-class multiclass classification problem

3 degradation stages 5 degradation stages

Case study ML classifier SAE PAE MMAE SE SAE PAE MMAE SE

B11

ExtraTreesClassifier 99,01% 99,06% 98,79% 98,60% 97,66% 98,41% 97,20% 95,99%
GradientBoostingClassifier 98,76% 99,44% 98,63% 98,66% 97,20% 98,28% 97,20% 95,86%
RandomForestClassifier 98,63% 99,11% 98,68% 98,60% 97,39% 98,44% 97,12% 95,99%
KNeighborsClassifier 98,55% 97,10% 98,36% 98,74% 94,81% 89,95% 94,76% 96,21%
LinearDiscriminantAnalysis 97,90% 98,20% 97,18% 98,71% 92,20% 90,40% 92,04% 96,16%
SVM 98,12% 97,53% 98,44% 98,76% 94,14% 89,57% 93,52% 96,05%

B12

ExtraTreesClassifier 93,42% 95,35% 92,89% 92,37% 89,04% 92,54% 89,21% 86,23%
GradientBoostingClassifier 93,16% 95,00% 92,81% 92,28% 88,42% 91,58% 88,33% 87,11%
RandomForestClassifier 93,51% 94,56% 92,89% 93,16% 87,72% 92,11% 88,68% 87,28%
KNeighborsClassifier 88,68% 87,63% 90,53% 92,46% 80,96% 79,47% 83,25% 86,93%
LinearDiscriminantAnalysis 88,07% 89,39% 86,75% 93,07% 75,53% 78,77% 75,70% 87,89%
SVM 89,21% 91,84% 88,68% 92,54% 76,84% 75,26% 77,19% 88,25%

B21

ExtraTreesClassifier 96,42% 99,00% 96,42% 94,92% 90,25% 96,08% 90,00% 87,00%
GradientBoostingClassifier 96,08% 99,17% 95,75% 94,42% 89,25% 95,42% 89,42% 87,75%
RandomForestClassifier 96,33% 99,17% 95,92% 94,58% 89,58% 96,00% 89,92% 87,42%
KNeighborsClassifier 93,75% 83,50% 93,50% 94,75% 84,50% 69,67% 83,92% 87,58%
LinearDiscriminantAnalysis 87,83% 93,00% 87,50% 94,75% 81,08% 82,58% 80,67% 87,83%
SVM 89,92% 89,83% 90,25% 95,00% 80,83% 78,00% 81,75% 87,50%

respect of the other ML classifiers, and the per-
formances are consistent with the one provided
via SE. This result can be explained considering
the fact that KNN, SVM and LDA are classifiers
whose performances are highly impacted by the
spatial class-separability of the features in input.
This class separability is directly maximised by SE
providing generally better results for these type of
classifiers.

This result is confirmed by Fig. 4 in which
the projections over the 3 principal compo-
nents obtained from the features learned by each
encoder are visualized in a 3D plot. In the figure,
it is possible to see how SE results in clusters of
data for each degradation stage characterized by
a clear separation, and hence the multi-similarity
loss maximizes their class-separability.

The fact that approaches based on boosting
using the features learned by SAE, PAE, and
MMAE outperform the approaches with features
learned by SE implies that SE learns features
less informative from the classification perspec-
tive than the others approaches. Moreover, as
Fig. 4 shows, SE learns a representation that is
highly separated and compacted. This represen-
tation doesn’t resemble the expected distribution
of the feature, which we expect to gradually shift
from one degradation stage to another, as evi-
dent from the principal components of the features
learned by MMAE and SAE. The PCA projection

space depicted in Fig. 4 employs the first three
principal components derived from the projected
data with case study B11. The projections learned
by the SE model exhibit a more distinct separation
between the classes. This visualization does not
necessarily imply that the other (less clearly sep-
arated) PCA projection spaces, obtained through
SAE, PAE, and AE, should always correspond
to significantly worse classification performance.
Indeed, those recognition performances are also
due to the predictive capability of the ML model.
In fact, the ML approaches that mostly rely only
on the spatial distribution of the data such as
KNN, SVM, and LDA, result in better classifica-
tion performances using SE-learned features with
respect to the ones obtained via SAE, PAE, and
AE. The same result can be observed considering
the other study cases (B21 and B22). On the other
hand, models with a greater prediction capability
such as decision tree ensembles, result in compa-
rable classification performances when considering
the features learned by SAE, PAE, AE, and SE.

Considering the comparison between SAE,
PAE and MMAE, the features learned by PAE
achieve always the best classification perfor-
mances, on the other hand, as discussed in [3], the
PAE architecture needs to train one autencoder
module for each modality involved in the classi-
fication task, hence it need much more time to
be trained properly. For this reason there are use
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Fig. 4 Features learned with the B11 case study and pro-
jected over three Principal Components. The degradation
stages range from regular (blue) to critical (pink with 3
classes, green with 5 classes).

cases where the usage of MMAE and SAE should
be taken into consideration, since they provide
classification results completely in-line with PAE
but they require much less training time.

Fig. 5 Silhouette score (average and standard deviation)
comparison considering different case study (B11, B12 and
B21) varying the number of training epochs

For this reason we compared the features
learned by MMAE, SAE and PAE also consid-
ering clustering metrics, i.e. the silhouette score,
and show their results in Fig.5. We computed

the silhouette score for each encoder as the mean
silhouette score for each train feature learned con-
sidering as cluster identifier the degradation stage
of the sample. Hence, the silhouette score shows
how much the degradation stage clusters are sep-
arated in the encoding space by the architectures.
As shown in Figure 5, PAE and SAE shares gen-
erally better silhouette scores over the training
epochs and case of study ( B11, B12 and B21 )
with respect to MMAE.

6 Conclusion

The proposed architecture employs and compares
different multimodal AEs to extract representative
features from different minimally processed time
series data. Specifically, the vibration and temper-
ature are used to detect the degradation stage of
an industrial bearing. A publicly available real-
world dataset is employed to evaluate the effec-
tiveness of the proposed approach against state-of-
the-art technology in feature learning. The results
indicate that using unsupervised features learn-
ing methodologies, such as shared-input autoen-
coder (SAE), multi-modal autoencoder (MMAE),
and partition-based autoencoder (PAE) results in
high-quality learned features that can easily dif-
ferentiate between different classes despite the ML
classifiers employed, and especially if the ML clas-
sifier is based on ensembles of decision trees, such
as ExtraTreesClassifier, GradientBoostingClassi-
fier, and RandomForestClassifier.

Moreover, these autoencoder architectures
achieve average recognition performances that are
higher or comparable with those achieved by
employing state-of-the-art techniques (specifically,
multi-similarity loss) for feature learning even
though they are trained in an unsupervised fash-
ion and despite the number of degradation stages
taken into account.

The promising results achieved in our study
confirm how the PAE architecture learns supe-
rior quality features with respect to the other
approaches at the expense of greater training
time which also is negatively impacted by the
number of modalities involved [3]. For this rea-
son, SAE and MMAE architectures should also
be taken into consideration since they can learn
high-quality features from the data (with results
in-line with the ones learned by PAE), with less
training time. Moreover, for bearing degradation
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stage recognition, SAE should be preferred to
MMAE since it usually learns features that are
more separable with respect to the degradation
stage, considering different use cases and training
epochs.
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