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Abstract. Positioning data offer a remarkable source of information
to analyze crowds urban dynamics. However, discovering urban activity
patterns from the emergent behavior of crowds involves complex system
modeling. An alternative approach is to adopt computational techniques
belonging to the emergent paradigm, which enables self-organization of
data and allows adaptive analysis. Specifically, our approach is based on
stigmergy. By using stigmergy each sample position is associated with
a digital pheromone deposit, which progressively evaporates and aggre-
gates with other deposits according to their spatiotemporal proximity.
Based on this principle, we exploit positioning data to identify high-
density areas (hotspots) and characterize their activity over time. This
characterization allows the comparison of dynamics occurring in different
days, providing a similarity measure exploitable by clustering techniques.
Thus, we cluster days according to their activity behavior, discovering
unexpected urban activity patterns. As a case study, we analyze taxi
traces in New York City during 2015.

Keywords: Urban mobility · Stigmergy · Emergent paradigm ·
Hotspot · Pattern mining · Taxi-GPS traces

1 Introduction

The increasing volume of urban human mobility data arises unprecedented
opportunities to monitor and understand crowd dynamics. Identifying events
which do not conform to the expected patterns can enhance the awareness of
decision makers for a variety of purposes, such as the management of social events
or extreme weather situations [1]. For this purpose GPS-equipped vehicles pro-
vide a huge amount of reliable data about urban human mobility, exhibiting
correlation with people daily life, events, and city structure [2]. The majority of
the methods approaching the analysis of vehicle traces can be grouped into three
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categories: cluster-based, classification-based, and pattern mining-based ; whereas
the main application problems include the hotspot discovery, the extraction of
mobility profiles, and the detection and monitoring of big events and crowd
behavior [3]. For example, in [4] the impact of a social event is evaluated by ana-
lyzing taxi traces. Here, the authors model typical passenger flow in an area, in
order to compute the probability that an event happens. Then, the event impact
is measured by analyzing abnormal flows in the area via Discrete Fourier Trans-
form. In [5] GPS trajectories are mapped through an Interactive Voting-based
Map Matching Algorithm. This mapping is used for off-line characterization
of normal drivers’ behavior and real-time anomaly detection. Furthermore, the
cause of the anomaly is found exploiting social network data. In [6] the authors
use a Multiscale Principal Component Analysis to analyze taxi GPS data in
order to detect traffic congestion.

One of the main issues concerning the analysis of this kind of data is
their dimensionality. Many approaches handle it by focusing on specific areas
(hotspots) whose high concentration of events and people can summarize mobil-
ity dynamics [7]. As an example, in [8] a density-based spatial clustering is
employed to perform spatiotemporal analysis on taxi pick-up/drop-off to find
seasonal hotspots. Authors in [9] use OPTICS algorithm in order to detect city
hotspots as density-based clusters of taxi drop-off positions. Recently, in [10] an
Improved Auto-Regressive Integrated Moving Average algorithm is proposed; it
is aimed to detect urban mobility hotspots via taxi GPS traces and analyze the
dynamics of pick-ups in dense locations of the city. However, due to the com-
plexity of human mobility data, the modeling and comparison of their dynamics
over time remain hard to manage and parametrize [11]. In this paper, we present
an innovative approach based on stigmergy [12] that aims to handle both com-
plexity and dimensionality of these data, providing an analysis of urban crowds
dynamics by exploiting taxi GPS data. Specifically, our investigation covers the
city hotspots identification, the characterization of their activity over time and
the unfolding of unexpected activity pattern.

The paper is structured as follows. In Sect. 2 the architectural view of our
approach is described. In Sect. 3 the experimental studies and results are pre-
sented. Finally, Sect. 4 summarizes conclusions and future work.

2 Approach Description

In this section, we present our approach, based on the principle of stigmergy.
Stigmergy is an indirect coordination mechanism used in social insect colonies
[12]. It is based on the release of chemical markers (pheromones), which aggregate
when subsequently deposited in proximity with each other. This mechanism can
be employed in the context of data processing, providing self-organization of
data [13] while unfolding their spatial and temporal dynamics [14]. By exploiting
stigmergy, we discover city hotspots, characterize their activity dynamics (i.e.
presence of people over time) and assess unexpected activity patterns. In order
to focus on activity dynamics, we employ New York City taxi positioning data,
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considering the amount of passengers together with the GPS position of each
pick-up/drop-off.

2.1 Hotspot Detection

At the beginning, data samples are transformed in digital pheromone deposits,
allowing the progressive emergence of city hotspots (i.e. the most high-density
areas within the city). Firstly, data are treated by the smoothing process (Fig. 1),
in order to remove insignificant activity levels and highlight relevant dynamics.
This process is implemented by applying a sigmoidal function to the samples.
Then, a mark is released in correspondence of each smoothed sample in a three-
dimensional virtual environment. Marks are defined by a truncated cone with
a given width and intensity (height) equal to data sample value. The trailing
process aggregates marks, forming a stigmergic trail, which is characterized by
evaporation (i.e. temporal decay δ) and defined as Ti = (Ti−1 − δ) + Marki.

As an effect, isolated marks tend to disappear, whereas the arrival of new
marks in a given region counteracts the evaporation. Thus, aggregation and
evaporation can act as an agglomerative spatiotemporal clustering with his-
torical memory. Hotspots are identified as the city areas corresponding to the
overlapping of the most relevant trails obtained by processing data in early morn-
ing (i.e. 3am–8am), morning (i.e. 9am–2pm), afternoon/evening (i.e. 3pm–8pm),
and night (i.e. 9pm–2am) time slots. As an example, Fig. 1 shows the hotspots
identified in Manhattan (New York City). Their locations correspond to: East
Harlem - Upper East Side (A), Midtown East (B), Broadway (C), East Village
- Gramercy - MurrayHill (D), Soho - Tribeca (E), Chelsea (F) and Time Square
- Midtown West - Garment (G).

2.2 Hotspot Activity Characterization

For each identified hotspot, we generate the activity time series, by periodically
collecting the amount of activity occurred in the hotspot during a day. Let us
consider an activity time series; what is actually interesting is not the continuous
variation of the activity over time, but the transition from one type of behavior
to another.

Fig. 1. The stigmergy-based process of hotspot discovery.
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Generally, given a time window each hotspot behavior can be characterized
by an ideal time series segment of hotspot activity representing that specific
behavior. More formally, we define it as an archetype. An example of an archetype
is asleep behavior, which usually occurs during the night, between the calming
down of the nightlife and the arrival of the workers; here the city exhibits its
lowest activity level.

Fig. 2. The architecture of a SRF.

In order to detect an archetypal behavior in hotspot activity time series, we
design a processing schema called Stigmergic Receptive Field (SRF), because it
is receptive to a specific archetype and it processes samples employing the prin-
ciple of stigmergy. Specifically, SRF computes a degree of similarity between a
specific archetype (Fig. 2a) and an activity time series (Fig. 2a′), by subsequently
processing their samples, which are assumed to be normalized between 0 and 1.

First, samples undergo the clumping process (Fig. 2b and b′), which acts as a
sort of soft discretization creating clumps of samples. Clumps arrangement can
be parametrized allowing to fit the analysis over the archetype’s levels of interest.
The clumping can be implemented as a double sigmoidal function. Second, the
marking process (Fig. 2c and c′) enables the release of a mark in a bi-dimensional
virtual environment in correspondence of the sample value. The mark can be
implemented by a trapezoid with given intensity (height) and width ε. Third,
the trailing process accumulates marks creating the trail structure, whose inten-
sity decays (i.e. evaporates) of a given rate δ at each step of time. As an effect,
evaporation rate and mark width allow the trail to capture coarse spatiotem-
poral structure in data, handling micro-fluctuations. Fourth, current Tact and
archetypal trails Tarc are compared by the similarity process (Fig. 2d), by using
the Jaccard coefficient S = |Tarc ∩ Tact|/|Tarc ∪ Tact| [15]. This coefficient pro-
vides a measure of similarity between 1 (identical trails) and 0 (non-overlapping
trails). Finally, the activation process is applied to enhance only relevant similar-
ity values and remove insignificant values according to the activation thresholds
αa, βa. This process can be implemented by using the already mentioned sig-
moidal function, i.e. f(x, αa, βa) = 1/(1 + e−αa(x−βa)).
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In order to provide an effective similarity, the SRF’s parameters have to
be properly tuned. With this aim, the Adaptation process uses the Differential
Evolution (DE) to adapt the structural parameters of the SRF: (i) the clumping
inflection points α, β, γ, λ; (ii) the mark width ε; (iii) the trail evaporation δ;
(iv) the activation thresholds αa, βa. The aim of DE is to minimize the mean
square error (MSE), considering the error as the difference between the target
Ŝ and the computed S similarity values over a set of M labeled time series, i.e.
Fitness =

∑M
i=1(|Si − Ŝi|2)/M . The target similarity value is 1 if the current

time series exhibits the archetypal behaviour, 0 otherwise.

Fig. 3. The overall processing of activity samples.

Since any real signal is usually similar to more than one archetype, a col-
lection of SRFs, specialized on different archetypes and ordered for increasing
activity, is arranged in a connectionist topology to make a Stigmergic Per-
ceptron (Fig. 3). Specifically, adopted archetypes are: Asleep (Fig. 3g), i.e. the
hotspot at its lowest activity level; Falling (Fig. 3f), i.e. the flow just before the
city activity calms down; Awakening (Fig. 3e), i.e. the waking up of urban life
after a calm phase; Flow (Fig. 3d), i.e. the hotspot at its operating capacity,
usually exhibited during working hours; Chill (Fig. 3c), which usually occurs
after a rush hour, when people leave work and take taxis to return home;
Rise (Fig. 3b), i.e. the hotspot transition to its most intense activity level; and
Rush-Hour (Fig. 3a), which usually occurs in early morning and late afternoon,
when people movement is at its highest rate. A perceptron computes a single
output from multiple inputs, by forming a linear combination of them. Simi-
larly, the stigmergic perceptron (SP) combines linearly SRFs’ outcomes by com-
puting their weighted mean, using the provided similarities Si as weights, i.e.
ActivityLevel =

∑N
i=1(Si ∗ i)/

∑N
i=1(Si). The resulting value is called activity

level and is defined between zero and N, where N is the number of SRFs. An
important aspect concerning hotspot activity level computation is to train each
SRF inside a SP in order to prevent multiple activations of SRFs. Let us con-
sider the most sensitive SRF parameter, i.e. the evaporation δ. High evaporation
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prevents marks aggregation and pattern reinforcement, while low evaporation
causes the saturation of the trail. In order to handle this sensitivity, the adapta-
tion of each SRF inside a SP is twofold: (i) the Global Training phase is aimed
to determine an interval for the evaporation rate of each SRF. The interval
[δmin, δmax] is obtained considering the narrowest interval including the fitness
values above its 90th percentile, while the intervals for the other parameters can
be statically assigned on the basis of application domain constraints; and (ii) the
Local Training phase aims to find the optimum values for every module of each
single SRF, by using the interval generated in the Global Training phase. As a
result, a proper trained Stigmergic Perceptron provides the characterization of
hotspot activity, by transforming a given time series of activity samples in a new
time series of activity levels. In order to compute the overall similarity between
hotspot activity levels gathered in two different days, we employ a further SRF
(Fig. 3h) which uses one activity level time series just like it was an archetype.
The adaptation in this specific SRF tunes mark width ε, trail evaporation δ, and
activation thresholds αa and βa. As fitness function, we use the Mean Squared
Error (MSE) between computed and ideal similarity over a set of labeled pairs
of activity time series (i.e. the training set).

2.3 Unexpected Patterns Detection

Exploiting the mechanism described above, we generate the similarity matrix,
that is the collection of similarities obtained by matching with each other the
activity level time series of the training set. Provided similarity matrix can be
processed by a fuzzy relational clustering technique, grouping days according
to their daily activity similarity. Specifically, we employ Fuzzy C-Mean to com-
pute the clusters centroid. The number of clusters corresponds to the number
of daily activity behaviors taken into account in the analysis. Based on these
centroids, the membership degrees of further daily activity level time series can
be computed. The membership degrees are between 0 (not belonging to the clus-
ter) and 1 (completely belonging to the cluster). By exploiting the membership
degrees un as a distance, we measure the extraneousness of current activity level
with respect to its expected cluster. The Extraneousness Index (EI) is defined
as the Manhattan Distance between current daily activity level series d and the
centroid of the cluster in which current day is assumed to belong. In Eq. 1, the
computation case with 3 clusters is shown.

EI(d) = (|u1(d) − u1(C2)| + |u2(d) − u2(C2)| + |u3(d) − u3(C3)|)/2 (1)

We define as an Unexpected Pattern a day characterized by an activity level
whose EI exceeds the maximum EI computed over the training set.

3 Experimental Studies and Results

We have analyzed a dataset of taxi traces provided by the Taxi and Limousine
Commission of New York City, which contains information about all medal-
lion taxi trips from 2009 to 2016 [16]. We focus our investigation on dynamics
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occurred during 2015 in Manhattan considering that it attracts the most of the
taxi trips in New York City. A pre-processing step has been performed to remove
missing values and discretize data in spatiotemporal bins defined as a squared
area 10-foot- wide with duration of 5 min. Then, the min-max normalization is
applied. In order to search for hotspots characterizing every possible city rou-
tine (i.e. summer and winter ones), the hotspot discovery procedure has been
performed comprising data gathered in working days and week-ends of February
2015 and June 2015.

Since archetypes are assumed to be general, the training set for the SP’s
global and local phases is generated by using the pure archetype time series as
seeds and applying spatial noise and temporal shift.

In order to validate the SP archetypal behavior detection, a set of time series
have been manually labeled and the difference with the actual results of the
SP is used to evaluate detection error. Each label corresponds to the expected
SP result according to the archetypal behavior visually detected in current time
series (i.e. 1 if Asleep, 2 if Falling, and so on). To this purpose, 35 time series
(i.e. 5 for each archetype) have been provided to the SP. The obtained MSE is
shown in Table 1. By considering the activity level operative range (i.e. [1,7])
and the provided MSE values, the system shows good detection performances,
proving the functional effectiveness of the SRF and the SP.

Table 1. Mean square error in archetypal behavior detection via SP.

Archetype Asleep Falling Awakening Flow Chill Rise Rush-hour TOT

MSE 0.215 0.029 0.029 0.028 0.166 0.020 0.143 0.633

In the next processing phase, a further SRF is aimed to assess the similarity
between daily activity levels. It is provided with a training set obtained by select-
ing a set of pairs of daily activity levels. In order to supply a clustering process,
such SRF is trained to distinguish similar and dissimilar signals, according to the
behavioral class of daily activity levels, namely: (i) Working days (expected to
fall between Monday and Tuesday), when crowd movements are mainly caused
by working routines; (ii) Entertainment days (expected to fall on Friday and Sat-
urday), in which people tend to spend the night out; (iii) Leisure days (expected
to fall on Sunday), which are characterized by limited transportation usage.
Their target similarity is 1 if days belong to the same behavioral class, 0 oth-
erwise. Since the defined classes refer to the cyclical sequence of week days, our
ground truth can be provided by the calendar itself. The 10% of computed daily
activity levels have been used to create these pairs (i.e. 1296 pairs overall).

The Fuzzy C-Mean algorithm is used to group days according to their
stigmergy-based similarity in order to arrange them among the three provided
clusters, namely: Working, Entertainment and Leisure days. Upon this, we
exploit the Extraneousness Index in Eq. 1 to assess unexpected patterns.
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We show results obtained analyzing hotspot D, since it is characterized by
multiple usages [17] allowing the displaying of every activity level behavioral
class. Interestingly, this area is also found to be an hotspot by [9].

Fig. 4. Membership degrees of days in September and October. The whitest, the higher.

Figure 4 shows the computed membership degree for each cluster, obtained
with days in September and October. The whitest the box, the higher the degree.
Clearly, the stigmergy-based characterization of hotspot daily activity allows
to cluster days according to their behavioral class which corresponds to the
arrangement we assumed. Indeed, most of the Sundays (highlighted by a circle
in Fig. 4) exhibit their highest membership degree with Leisure day cluster. The
same happened with days in Entertainment and Working cluster. It is worth
noting that provided approach allows the mapping of daily behaviors to emerge
from data instead of being explicitly injected into the system.

However, some days does not confirm this behavior. Indeed, by comparing
their EI with the maximum EI in the training set (red line in Fig. 5), they are
recognized as an unexpected pattern (red spot in Fig. 5).

Fig. 5. Extraneousness Index computed over days in September and October. (Color
figure online)

Table 2 shows the most relevant unexpected patterns detected by analyzing
the whole year 2015. Each unexpected pattern date is shown together with their
most probable cause, such as an occurred social event. EI provides a continuous
measure of the magnitude of unexpected patterns, allowing the comparison of
their impact on hotspot activity dynamics. As an example, Easter affects the
activity in hotspot D much more than the NYC Half Marathon. Indeed, the
greatest Easter celebrations in NYC are kept by the St. Patrick Cathedral, which
is located in the area corresponding to hotspot D, whereas this area was not
directly involved in the NYC Half Marathon 2015. By repeating the analysis in
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Table 2. Most relevant unexpected patterns detected all over 2015.

EI Date and occurred city event

0.96 06-Sep, Labour day

0.94 24-May, Memorial day

0.86 31-Oct, Halloween

0.83 26-Nov, Thanksgiving

0.83 28-Jun, Gay Pride

0.82 25-Dec, Christmas

0.81 01-Jan, New Year’s Eve

0.80 04-Apr, Easter (holy Saturday)

0.79 27-Jan, Winter Storm Juno [18]

0.74 05-Sep, Labour day celebrations

0.63 03-Jul, Independence day

0.63 31-Dec, New Year’s Eve

0.61 15-Mar, NYC Half Marathon

0.49 24-Sep, Pope Francis visit NYC

the same date on hotspot C, the computed EI results roughly 60% higher (i.e.
0.96); indeed the zone corresponding to hotspot C was directly crossed by NYC
Half Marathon 2015.

4 Conclusion

In this paper, we proposed a novel approach aimed to provide knowledge discov-
ery in the context of human urban mobility data. In contrast with the literature
in the field, our approach does not require the in-depth modeling of the dynamics
under investigation since it relies on data self-organization provided by employ-
ing the principle of stigmergy. Indeed, by using stigmergy, the spatiotemporal
density in data has been exploited to identify city hotspots and characterize their
dynamics, allowing to generate data-driven prototypes of typical daily activity.
By treating them via a clustering technique, we were able to discern expected
patterns from unexpected ones, which were found to be usually related to vari-
ous events. One of the most promising improvements for this investigation can
be achieved by cross-checking results obtained via vehicle GPS data with other
data sources (e.g. social media or car crash data). Indeed, by employing a more
detailed ground truth, the system can be specialized to model and detect pat-
terns characterized by a timescale shorter than a daily one.
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