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ABSTRACT

According to the smart manufacturing paradigm, the analysis of assets’ time series with a ma-
chine learning approach can effectively prevent unplanned production downtimes by detecting assets’
anomalous operational conditions. To support smart manufacturing operators with no data science
background, we propose an anomaly detection approach based on deep learning and aimed at provid-
ing a manageable machine learning pipeline and easy to interpret outcome. To do so we combine (i)
an autoencoder, a deep neural network able to produce an anomaly score for each provided time series,
and (ii) a discriminator based on a general heuristics, to automatically discern anomalies from regular
instances. We prove the convenience of the proposed approach by comparing its performances against
isolation forest with different case studies addressing industrial laundry assets’ power consumption

and bearing vibrations.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction and Motivation

Smart manufacturing paradigm aims at enhancing produc-
tion adaptability and efficiency by integrating manufacturing
assets with technologies such as cloud computing, internet of
things, and machine learning (Kusiak, 2017). These solutions
enable unprecedented data-driven decision support, with appli-
cations ranging from predictive maintenance to anomaly detec-
tion (Ghosh et al., 2016). In contrast with predictive mainte-
nance, anomaly detection does not require large sets of exam-
ples of assets’ anomalous behaviors, that are rare events by defi-
nition. Moreover, anomaly detection approaches can effectively
support assets’ health diagnosis. Indeed, a higher frequency of
anomalies’ occurrence may be linked to assets’ deterioration,
thus resulting in unplanned downtimes (Zhao et al., 2017).

However, the development of anomaly detection solutions in
real-world manufacturing demands a trade-off between system
management cost and detection accuracy. Specifically, by in-
corporating more domain knowledge, the system provides bet-
ter accuracy (Lopez et al., 2017), but it requires a complex ad-
hoc design, and costly post-processing, resulting in poor scala-
bility, generalization and manageability (Fan et al., 2018).

**Corresponding author: Tel.: +39 09848317, fax: +0-000-000-0000;
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The approaches for anomaly detection in smart manufactur-
ing can be classified according to the domain knowledge they
incorporate as statistical, model-based, and phenomenological
approaches (Lopez et al., 2017). With statistical approaches,
anomalies and regular instances are distinguished according to
their different statistical properties; the domain knowledge is
not incorporated in the detection mechanism in any form, pro-
viding a general and manageable solution. With model-based
approaches, the domain knowledge results in a precise model
(e.g. an equations) used to characterize each instance as a reg-
ular or anomalous operational condition; e.g. the anomalies of
a logic controller can be accurately detected by employing its
control logic. Phenomenological approaches provide a trade-
off between the first two; these approaches employ some de-
gree of domain knowledge to characterize data point distribu-
tions (e.g. by defining behavioral classes), resulting in a model
able to distinguish regular instances and anomalies. According
to (Lopez et al., 2017) phenomenological approaches may em-
ploy different strategies. Among those, knowledge-based ap-
proaches compare process measurements against known fault
patterns (e.g. via expert systems), but require a comprehensive
knowledge of the system to link inputs combinations to system
operational conditions. The same applies to approaches based
on state estimation, i.e. modeling the anomalies as states of
the system, enabling their detection through states history and
current inputs and outputs. A solution based on classification



needs a large set of regular and anomalous instances to properly
model the corresponding behavioral classes. With limit check-
ing approaches, anomalies are detected via signals features ex-
ceeding “regular behavior ranges”, however, the definition of
such ranges is often manual and needs to be repeated for each
asset. Solutions based on clustering imply a time-consuming
subsidiary task to identify the clusters with regular occurrences
(Li et al., 2017). Finally, with approaches based on regression,
the relationship between instances’ features (predictors) and the
regular operational conditions is modeled; anomalies’ are de-
tected since they do not conform with the model to some extent,
e.g. measured with an anomaly score. These solutions offer
a simpler implementation at the cost of a non-trivial score in-
tepretability. As an example, authors in (Liu et al., 2012) use an
isolation forest to partition the data according to their density,
recursively obtaining subsets with fewer and fewer instances.
Since anomalies are usually located in sparse regions, they re-
sult in shorter tree branches. In (Amer et al., 2013) authors use
an approach based on one-class support vector machine to sep-
arate regular instances from anomalous ones through a bound-
ary in the features space. Due to their rarity, anomalies con-
tribute less to the decision boundary and result in a greater dis-
tance from it. Within regression-based approaches, deep neu-
ral networks provide greater efficiency while modeling com-
plex structure underlying in the data. Among them, deep learn-
ing approaches based on autoencoder (Liou et al., 2008) are
often used for anomaly detection. As an example, in (Linde-
mann et al., 2019) authors provide an anomaly detection archi-
tecture by combining an autoencoder with LSTM (long short
term memory cells) to capture complex temporal dependencies
in the data. A properly trained autoencoder is able to correctly
reconstruct non-anomalous inputs. As such, the likelihood that
a given input is an anomaly can be assessed by the autoencoder
reconstruction error, i.e. the anomaly score.

However, the score itself does not provide a clear distinction
between anomalies and regular instances and may be hard to
interpret, especially for operators with no data science back-
ground. Given how critical is to obtain reliable insights from
such analysis (Sun et al., 2019), data scientists are often em-
ployed to determine an anomaly score’s threshold correspond-
ing to a sufficiently significant deviation for a data point to
be considered an anomaly. This results in additional loops in
the anomaly detection management pipeline, as shown via the
BPMN diagram in Fig. 1 by employing the taxonomy provided
by (Saltz and Grady, 2017). The pipeline begins with the data
engineer setting up the data ingestion, to collect and store the
monitored assets’ data. They care also about the data selec-
tion and preprocessing, to ensure that the data used to train the
anomaly detector is representative and consistent. It follows
the extraction of representative features from the data and their
split in training and testing set. Those are employed by the
data scientists to train and test the model of the anomaly de-
tector they designed. The pipeline ends with the positive eval-
uation of the detection performance, which is provided by the
business expert. Receiving a positive evaluation may require
many iterations aimed at adjusting the anomaly detector hyper-
parameters, and refining the anomaly score threshold. While
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the cost of the first iteration can be mitigated by using auto-
mated hyper-parameter tuning (Zhang et al., 2019a), the last
one is a critical process often performed manually since too re-
strictive thresholds may increase the false negatives, and loose
thresholds results in many false positives. This process is even
more difficult with real world data, which may be characterized
by a significant amount of noise, i.e. minor deviations. Those
represent the semantic boundary between regular instances and
true anomalies. Moreover, the separation between noise and
anomalies is not discrete, i.e. many data points created by a
noisy generative process may be deviant enough to be inter-
preted as anomalies according to their score (Aggarwal, 2015).
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Fig. 1. BPMN diagram of the anomaly detection pipeline.

By summarizing, real-world smart manufacturing requires
general and accurate anomaly detection, but may suffer from
computational inefficiencies and costly human-driven post-
processing to improve the effectiveness and the interpretabil-
ity of the detection (Wuest et al., 2016). In this work, we ad-
dress those issues by combining autoencoder with a heuristic-
based discriminator. The autoencoder is aimed at providing the
anomaly detector with (i) adaptation capability, i.e. being effec-
tively employable in different contexts, and (ii) computational
efficiency, to reduce the cost of refining the anomaly detector,
especially with automatic tools iteratively improving the model
hyper-parameters. On the other hand, the discriminator aims at
(i) improving the interpretability of the anomaly score, and (ii)
providing an accurate and precise detection outcome, without
the intervention of a data scientist (Fig. 1). The convenience of
the proposed approach is shown by comparing its performances
against one of the best-in-class competitors, i.e. isolation forest,
with 8 different case studies. Paper is structured as follows. In
section 2, we detail our anomaly detection approach. Section 3
presents our case studies. The experimental setup and obtained
results are discussed in section 4 and 5, respectively. Finally,
section 6 summarizes conclusions and future works.

2. Design

The data are prepared for the analysis by extracting 16 fea-
tures from each time series, then rescaling and splitting those
in training and testing sets. In order to discover both local and
global anomalies, the features extraction can employ a spatio-
temporal clustering procedure with adaptive time granularity
(Cimino et al., 2015; Galatolo et al., 2018). However, this re-
quires an additional hyper-parameter tuning process and results
in non-interpretable representational space. A more manage-
able solution is capturing the trends of the time series over time



with statistical features computed both on the entire duration of
each observation (features a-¢) and on semi-overlapping time
windows, e.g. with features f each time windows has a dura-
tion of one-quarter of the overall length of the series. For each
time series we extract the following features:

(a) 90th, 75th, 50th and 25th percentile of the time series

(b) mean absolute deviation of the time series

(c) skewness of the time series

(d) number of continuous time intervals with values greater
than 90th, 75th, 50th and 25th percentile of the time series

(e) number of samples greater than 50% and 25% of the daily
maximum of the time series

(f) the difference between the mean absolute deviation of the
current time window and mean absolute deviation of the
whole time series
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Fig. 2. Example of features extracted from time series. The time series is
characterized by 8 intervals over the 75th percentile and 19 samples over
50% of the maximum.

Specifically, the number of continuous intervals in which the
time series is greater than a given threshold (features d) repre-
sents the fluctuations across such threshold. On the other hand,
the number of samples greater than a given threshold (features
e) represents the total duration of the time series above that
threshold (Fig. 2). Chosen feature thresholds aim at address-
ing both high and low ranges of the time series values. Finally,
the thresholds for features e are obtained as percentages of the
maximum of the time series (rather than a percentile), since
the number of samples greater than a given percentile would
always be the same. The features are rescaled by using a Min-
Max procedure (Goldstein and Uchida, 2016). The training set
is obtained by randomly picking 70% of the regular instances,
whereas the testing set contains the remaining 30% of regular
instances and an equal percentage of all the anomalous ones.

Our approach employs an aufoencoder to score the anomaly
degree of each input instance. An autoencoder is a deep neu-
ral network architecture made of 2 main components: encoder
and decoder (Fig. 3). The decoder is able to reconstruct the
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input data from a compact hidden representation. The encoder
is in charge of producing a compact hidden representation of
the inputs, by building a few representative features and ignor-
ing meaningless components. The autoencoder is trained to
minimize the reconstruction error, i.e. mean square error be-
tween training set inputs and their reconstruction. By being
trained with regular occurrences, the autoencoder can repro-
duce these with a little reconstruction error, whereas anomalous
occurrences result in greater errors.

The reconstruction errors are further processed by the dis-
criminator, which rescales them between 0 and 1 by using a
sigmoidal function tuned via two parameters, i.e. « and 8
(Fig. 3). Values lower than « are transformed into 0. Values
higher than beta are transformed into 1. Values between these
two values are progressively shifted toward 1 or 0 according to
their proximity to @ and 8. The value of « is obtained as the
99th percentile of the reconstruction errors in the training set.
The midpoint between « and g corresponds to the average re-
construction error obtained by processing two minor synthetic
anomalies, created by collecting the maximum and minimum of
all the features in the training set. The value of 8 corresponds
to « plus twice the distance between @ and the midpoint (Fig.
3). The discriminator is aimed at automating the distinction
between anomalies and regularities. With the classic anomaly
detection pipeline (Fig. 1), this was obtained with the thresh-
old iteratively chosen by the data scientist, but, by using the
discriminator, the anomaly score has a precise meaning: reg-
ular occurrence (0), anomalous occurrence (1), and noise, e.g.
warning operational condition (between 0 and 1).
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Fig. 3. Anomaly detector architecture.

3. Case studies

In smart manufacturing context, assets’ operational condition
can be inferred by analyzing power consumption, vibrations, or
acoustic emission (Zhang et al., 2019b). Among those, vibra-
tion and acoustic monitoring usually require additional expen-
sive sensors, whereas power consumption is measured within
each asset’s machine controller. Moreover, power consumption
has shown great potential in supporting health monitoring (Si-
mon et al., 2017), and anomaly detection (Ouyang et al., 2018)
with smart manufacturing assets. As such, in this work we ad-
dress the anomalies in assets’ energy consumption, while as
manufacturing scenario we employ an industrial laundry.

In an industrial laundry, each asset cares a specific phase
of garments processing. This process begin with the arrange-
ment of the garments into batches to be moved to the washing
process. The washing process is carried out by the continu-
ous batch washing (CBW) or the washer-extractor. A CBW is a



large cylinder separated into compartments arranged as a screw;
by rotating, batches are moved through each compartment, and
each one of them performs a predefined task (pre-wash, wash,
etc.). The washer-extractor is the industrial version of a house-
hold washing machine, and its washing programs includes a
spin-dryer function. Alternatively, the moisture in washed gar-
ments is reduced by heating or squeezing them, i.e. by using a
dryer or a hydro-extracting press. Then, the garments undergo
the finishing operations, carried out by mangles, finishing tun-
nel (i.e. tunnel with jets of hot air or steam) or ironers, which
uses padded rollers that press the garments against a heated sur-
face to remove the wrinkles and completely dry them. Even-
tually, the clean and folded garments are arranged neatly in a
warehouse, ready to be returned.

Among those assets, we choose the ones to analyze by
exploiting the information our domain expert has provided.
Specifically, we know that (i) the dryer, CBW, washer-extractor,
and hydro-extracting press exhibit an high energy consumption,
which increases in poor maintenance conditions (e.g. asset ag-
ing); (i1) an ironer can exhibits peaks of power consumption in
case of stacked garments or during the start-up of the ironing
process. Thus, our analysis focus on the power consumption
of CBW, washer extractor and ironer. These time series are
realistically reconstructed by exploiting the official information
of assets’ manufacturers (e.g. nominal energy consumption),
a baseline example for each asset from previous studies (IEEA,
2010), and the details provided by our project industrial partner.
This allows representing a variety of regular and anomalous be-
haviors (Zenisek et al., 2018), which is commonly missing in
real-world scenarios given that (i) the extensive adoption of re-
mote monitoring technologies in manufacturing is quite new,
and (ii) anomalies are rare event by definition.

The power consumption time series are characterized by a
sampling rate of 1 Hz (Humphrey et al., 2014) and a standard
deviation per minute of 0.015 (Skoogh et al., 2011). Each time
series address the power consumption during the day (24 hours)
corresponding to a total amount of 86400 samples per time se-
ries. Moreover, each asset’s power consumption has a pecu-
liar temporal behavior. Specifically, the CBW may require 2-4
kWh, but it can decrease due to production stop or minor work-
load between 0.25 and 0.75 kWh. Those production downtimes
are randomly arranged in the working day with a duration from
1 to 4 hours (IEEA, 2010). Similarly, the washer-extractor en-
ergy consumption can range from 3.5 to 4.6 kWh with a few
brief drops (between 0.5 and 3 kWh) randomly arranged dur-
ing the working time. After those, the power consumption rises
to 4.5 kWh and then progressively decreases with a couple of
spikes of +0.2/4+0.3 kWh (Kathrin et al., 2011). The power
consumption of an ironer exhibits a peak (22 kWh) during the
first working hour, followed by a sharp drop. Then it ranges
between 15 kWh and 20 kWh. It can have short (a couple
of hours at most) intervals characterized by a lower consump-
tion, between 12 and 8§ kWh. Depending on the model of the
ironer, its power consumption can reach 22 kWh when fully
operational (David et al., 2013). Those temporal behaviors are
summarized by the following features: (i) kWh consumed by
the machine when fully operational; (ii) kWh consumed by the
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machine when stopped; (iii) occurrence of short stops (15 to
30 minutes long); (iv) occurrence of stops in the working day;
(v) duration of stops in minutes. By randomly extracting values
from the known ranges of each feature, we build each power
consumption time series. Table 1 shows the features’ ranges for
the 3 above-mentioned assets.

We obtain the time series of anomalous power consumption
by manipulating the regular ones as it follows. The ironer fea-
tures a few peaks (3 to 4) in the power consumption, each
one lasting from 10 to 20 minutes, the energy consumption
increases between 110% and 150% of the expected maximum
value; the machine start-up or the stacking of garments are sim-
ulated. The CBW and the washer extractor feature an increased
power consumption, between 120% and 150% of the expected
maximum value; the aging of the machine is simulated.

According to classic statistical models (Chandola et al.,
2009), anomalous instances should correspond to less than 1%
of the whole dataset. However, this assumption seems to be
optimistic with real-world smart manufacturing data. In this
context, the amount of anomalies is usually higher, often result-
ing in percentage of anomalous instances up to 5% (Paulheim
and Meusel, 2015). We employ such a percentage of anoma-
lies in our datasets to have a realistic setup. Please note that,
this is not an assumption or a requirement for the proposed ap-
proach. Indeed, once trained, the system can handle any amount
of anomalies.
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Fig. 4. Daily energy consumption of CBW, washer extractor and the ironer.

Finally, to prove the generalization capability of the proposed
approach, we test it also with real-world industrial bearing vi-
brations’ data (Bechhoefer, 2013). The dataset consists of 20
real-world bearing vibrations time series sampled at 25 Hz, rep-
resenting 3 regular operational conditions and 17 anomalous



Table 1. Power consumption time series features. Short downtimes are always between 15 and 30 minutes.

Asset kWh Operation | kWh Downtime | Short Downtimes per day | Downtimes per day | Downtimes Duration [min]

CBW [2,4] [0.25,0.75] [2, 4] [1, 1] [60, 240]
Washer-extractor [3.5, 4.6] [0.5, 3] [3, 5] [0, 1] [15, 15]

ITroner [15,20] [8, 12] [1,3] [2, 3] [45, 180]

operational conditions: 10 outer race fault conditions, and 7
inner race fault conditions respectively. The anomalous oper-
ating condition is not reconstructed, nor are their characteris-
tic behavior known. This entirely leaves the recognition of the
anomaly to the capability of the anomaly detection system. We
split each time series in time windows of 1000 samples length,
corresponding to a duration of 40 seconds. Then, 5 new datasets
are created by randomly sampling regular (baseline conditions)
and anomalous (faulty conditions) time windows, correspond-
ing to 95% and 5% of each new dataset, respectively. Basically,
we build an imbalanced classification problem that, given the
diversity of the original fault conditions and the random sub-
sampling used to inject them into these new datasets, can ap-
proximate an anomaly detection one (Aggarwal, 2015).

By summarizing, the data used to test our approach are com-
posed by (i) 3 case studies addressing the power consumption
of industrial laundry assets, i.e. CBW, washer extractor and
ironer (PC1, PC2, PC3 respectively) and, (ii) 5 case studies
about bearing vibrations (BV1, BV2, BV3, BV4, BVS). Table
2 reports the main characteristics of the data employed in our
experiments, such as actual duration of the time series, their
sampling rate and the number of samples, the total amount of
time series per dataset, how many of them are used for train-
ing and testing the system, the percentage of anomalies in the
dataset, and if the dataset is real or not.

4. Experimental Setup

We develop our anomaly detection architecture by using Ten-
sorflow 2.0 (Abadi et al., 2016). The autoencoder consists of
with 3 dense neural network layers for the encoder (16+8+4
neurons) and the same for the decoder (4+8+16 neurons). As
loss function we use the mean square error (MSE), as neurons’
activation function we use relu (rectified linear unit), and adam
as optimization strategy due to its computational efficiency and
little memory requirements (Zhu et al., 2017). We compare our
anomaly detection approach against isolation forest, given its
competitive performance (Riazi et al., 2019). The implemen-
tation of isolation forest is provided by (Ye and Guang-Tong,
2017), it does not imply features sub-sampling and sets as max-
imum tree depth the logarithm of two of the number of instances
(Liu et al., 2012). Moreover, we test our approach effective-
ness and computational efficiency by varying its main hyper-
parameters, i.e. by increasing the model’s complexity. Specif-
ically, with autoencoder the complexity of the model is due to
the number of links between neurons in the network, which de-
pends on the number of layers and neurons in each one of them.
The basic model consists of 6 layers, three for the encoder with
16, 8, and 4 neurons, and three for the decoder with 4, 8, 16
neurons, resulting in 336 links between neurons. By doubling
them we obtain 6 layers for the encoders with 16,14,12,10,8,6,4

neurons and the same for the decoder (in reverse order), result-
ing in 1344 links. By doubling their number again we get 24
layers, 12 in the encoder with 16 to 4 neurons, and 12 in the
decoder from 4 to 16 neurons, resulting in 2696 links. On the
other hand, with isolation forest, the complexity of the model
lies in the number of nodes for each decision tree, and on the
number of trees. We counted the average number of nodes in
the trees for our application, and this is between 42 and 62, on
average 55. Therefore, we can roughly define the complexity of
the model based on isolation forest as the number of trees multi-
plied by 55. In order to test the effectiveness of the recognition
using a comparable complexity between the two approaches,
isolation forest is used in the following configurations: 10, 25
and 50 trees corresponding to about 550, 1375 and 2750 nodes.

Furthermore, by increasing the number of training epochs
we expect a greater training time and a smaller detection er-
ror. The hardware/software platform used for our tests employs
a CPU Intel Core i7-6700 at 2.60-3.50 GHz, 6M Cache, 16 GB
DDR3L 1600MHz RAM, Windows 10 OS.

To have an easy to interpret detection result, the outcome of
the discriminator can be rounded and used as a label to discern
anomalies from non anomalies. As such, it is possible to com-
pute the detection accuracy and precision. To verify the dis-
criminator effectiveness we use this approach also in conjunc-
tion with isolation forest, for testing whether it increases the
detection performances. Finally, we compare the effectiveness
of the discriminator with another well-known method for dis-
criminating anomalies based on their score, i.e. making Gaus-
sian assumptions about the distributions of anomaly scores and
using a threshold obtained by considering the scores’ mean (u)
and standard deviation (o) as i + 3 o (Jin et al., 2016).

Achieved results are presented as confidence intervals ob-
tained with 10 repetitions. At each repetition training and
testing sets are respectively generated by randomly sampling
the 70% of the regular instances, and 30% of the regular and
anomalous instances from the data available for each case study,
resulting in a monte carlo cross-validation.

5. Results and Discussion

First, we measure the effectiveness of the detection as the
MSE between the anomaly scores and the anomaly labels (1
anomalous, 0 otherwise) using 100 training epochs both with
our approach and isolation forest. This is repeated with dif-
ferent hyper parameter settings, arranged in Table 3 to make
adjacent settings correspond to comparable model complexi-
ties within the two approaches. The results show that the pro-
posed approach always performs better, even with the minimum
model complexity. As this increases, the confidence intervals of
isolation forest shift downwards. On the other hand, with au-
toencoder there is no significant improvement except with the



Table 2. Datasets and time series (TS) main characteristics.

Name TS duration | Sampling Rate | Samples per TS | # Instances | # Train | # Test | % Anomalies | Real
PC1-PC3 24 hours 1 Htz 86400 1000 665 300 5% no
BVI-BVS5 | 40 seconds 25 Htz 1000 600 400 180 5% yes
case study BV1. One possible explanation for those behaviors BV1 BV2
lies in the effects obtained by increasing model complexity with 004 F—g—1 b8 I\I/I
isolation forest and autoencoder: in the first case, adding deci- w —%— Autoencoder w 0.05
sion trees means building a more general model, whereas in the 2 0.02| [—F=Forest =0
second case adding layers may result in overfitting, preventing T I/I"—_I
the deep neural network to improve its performances. "0 200 500 %% 00 200 500
Considering the training time needed with both approaches EFE’:\’I?S Eg“’ITS
(Table 4), the autoencoder offers greater computational effi- 0.06 0.06
ciency as the complexity of the model increases. This directly . H—-{ .
affects the management cost linked to the refinement of the Q0.04 Q0.04
anomaly detection model (Fig. 1) or its re-training. As such,
this property is critical, especially with new or more complex 002 1'[fg_‘;ﬁ)'”"_;o 002 1m0
detection problems (e.g. with noisier data). Epochs Epochs
In order to test the detection effectiveness according to the o1 BVS 0.06 PC1
number of training epochs, we take the most complex versions 008 I I_.I/'I
of both algorithms, i.e. isolation forest with 50 trees and the 8 006 8 00a
autoencoder with 24 layers, and we test them as the training = o0t =
epochs increase from 100 to 200 and 500. The resulting MSE ) e 0,07 T
95% confidence intervals are shown in Fig. 5. Clearly, the 100 200 500 100 200 500
proposed approach outperforms isolation forest in every exper- Effgs E‘;cgs
imental setting. In addition, with most of the case studies, a 0.08 0.08 I\I*’—{
higher number of epochs does not result in a lower error nor a 1y 0.06 I""I_I "
tighter confidence interval, and this may suggest again the pres- 2 2 .06
ence of overfitting (Caruana et al., 2001). Such results confirm 004 — 7
100 epochs training as good setting for the experimental results. 0.02— s 0.04 1m0
Finally, we assess the ability of the system to provide an in- Epochs Epochs

terpretable and reliable output, by measuring its precision and
accuracy as described in section 4. The discriminator used in
our approach is also used in conjunction with isolation forest
to study the impact of this component. In addition, the autoen-
coder reconstruction error is also treated with the 3sigma ap-
proach for comparison purposes. Compared to the 3sigma (Ta-
ble 5), the discriminator greatly improves the precision of the
detection with our approach and with isolation forest, both in
terms of mean and confidence interval width. The same applies
to the accuracy, which is largely improved by combining isola-
tion forest with the discriminator. Moreover, as a confirmation
of the effectiveness of the discriminator, please note that the
accuracy of isolation forest and autoencoder are almost compa-
rable when both of them employ the discriminator proposed in
this work. Finally, given the performance of the discriminator,
its adoption can replace the threshold refinement loop carried
by the data scientist (Fig. 1).

6. Conclusion and Future Work

In this work, we present a general, efficient, and accurate
anomaly detection approach, aimed at reducing the human-
driven post-processing needed to improve the reliability and
interpretability of the detection. Our approach employs an au-
toencoder to extract a score of the anomaly degree of a time

Fig. 5. 95% confidence interval of the MSE for each case study by varying
the training epochs.

series. This is further processed with a heuristics-based dis-
criminator aimed at rescaling such a score between O (regular
behavior) and 1 (anomaly).

This approach can easily support operators with no data
science background, since the interpretation of the resulting
anomaly score is straightforward, reliable, and does not require
the intervention of a data scientist for post-processing. More-
over, the short time required for training the system results in
low management costs associated with system re-training due
to the varying production cycles of a real-world manufacturing
plant, e.g. to model the machine’s behavior while making a
new product. The proposed anomaly discriminator is able to
improve the precision and accuracy of approaches other than
ours. Finally, with respect to isolation forest, a state-of-the-
art algorithm for anomaly detection, our approach results more
accurate and computationally convenient despite (i) the dataset
on which it is tested, e.g. power consumption of industrial laun-
dry assets or bearing vibrations, and (ii) the complexity of the
model, e.g. number of layers and neurons for the autoencoder,
number of trees for isolation forest. Given such promising re-
sults, as future works, we aim at extending our approach to (i)



Table 3. Confidence Interval of the detection MSE with the proposed approach (AE+DS) and isolation forest, by using 100 training epochs.

Approach iForest AE+DS iForest AE+DS iForest AE+DS
Complexity | ~ 550 nodes 336 links ~ 1375 nodes 1344 links ~ 2750 nodes 2696 links
BV1 0.049 £ 0.008 | 0.002 +0.002 | 0.044 +0.006 | 0.002 + 0.004 | 0.039 + 0.002 | 0.0004 + 0.00
BV2 0.071 £ 0.011 | 0.034 +£0.003 | 0.063 +0.004 | 0.035 +0.002 | 0.055 + 0.004 | 0.035 + 0.001
BV3 0.068 + 0.009 | 0.019 +0.002 | 0.061 +0.006 | 0.021 +0.002 | 0.052 + 0.005 | 0.023 + 0.003
BV4 0.077 £ 0.010 | 0.020 £ 0.002 | 0.066 + 0.008 | 0.024 + 0.003 | 0.057 + 0.003 | 0.028 + 0.003
BV5 0.100 + 0.010 | 0.026 +0.003 | 0.086 +0.006 | 0.029 + 0.002 | 0.074 + 0.003 | 0.029 + 0.002
PC1 0.075 £ 0.007 | 0.022 +£0.001 | 0.062 +0.008 | 0.021 +0.001 | 0.053 + 0.003 | 0.020 + 0.001
PC2 0.080 + 0.009 | 0.032 +0.002 | 0.069 +0.007 | 0.031 +0.002 | 0.065 + 0.004 | 0.029 + 0.001
PC3 0.093 £ 0.013 | 0.041 +£0.001 | 0.081 +0.008 | 0.042 +0.002 | 0.081 + 0.006 | 0.044 + 0.002

Table 4. Confidence Interval of the training time (in seconds) obtained with the proposed approach (AE+DS) and isolation forest, with 100 training epochs.

Approach iForest AE+DS iForest AE+DS iForest AE+DS
Complexity | ~ 550 nodes | 336 links | ~ 1375 nodes | 1344 links | ~ 2750 nodes | 2696 links
BV1 6303 6.7+0.2 16.5+0.8 8.0x0.2 32.7+0.7 10.7 £ 0.2
BV2 75+03 7.0+0.2 20.1 +1.8 8.4+04 38.7+0.6 11.8 +0.3
BV3 72+02 73+0.2 19.4 + 0.7 8903 379 +0.6 129 +0.3
BV4 7.6 +0.3 75+0.2 19.8 +0.4 92+0.2 39.8+0.9 14.1+03
BVS5 7.6+0.2 7.6 +0.3 19.8 +0.4 93+0.2 40.0+ 1.2 157+ 0.7
PC1 74+02 9.6 +0.3 19.3+0.3 13.1 £ 04 393+1.1 243 +28
PC2 74+02 9.6 +0.2 19.5+0.5 13.3+0.3 39.1+ 1.1 21.1+09
PC3 82+02 9.8+0.2 21.2+0.3 149+13 431+ 1.1 21.7+0.6

Table 5. Anomaly detection precision and accuracy with 30~ rule and the heuristic-based discriminator (DS).

Metr. Precision Accuracy
Appr. iForest Autoencoder iForest Autoencoder
+ 30 rule DS 30 rule DS 30 rule DS 30 rule DS

BV1 | 0.464 £0.031 | 1.000 + 0.000 | 1.000 + 0.000 | 1.000 = 0.000 | 0.946 +0.007 | 0.987 +0.001 | 1.000 + 0.000 | 1.000 + 0.000
BV2 | 0.379 £0.015 | 0.984 +0.024 | 0.584 +0.017 | 1.000 + 0.000 | 0.925 £ 0.005 | 0.965 +0.002 | 0.962 + 0.002 | 0.960 + 0.002
BV3 | 0.430 +0.023 | 1.000 +0.000 | 0.930 +0.035 | 1.000 + 0.000 | 0.938 + 0.006 | 0.976 + 0.001 | 0.996 +0.002 | 0.968 + 0.003
BV4 | 0.381 £0.017 | 0.993 £0.016 | 0.607 +0.015 | 1.000 + 0.000 | 0.926 + 0.005 | 0.970 = 0.001 | 0.968 + 0.001 | 0.960 + 0.002
BV5 | 0.303 £0.016 | 0.835+0.028 | 0.396 +0.015 | 0.917 £ 0.129 | 0.897 + 0.006 | 0.967 +0.002 | 0.925 +0.005 | 0.960 + 0.003
PC1 | 0.399 +£0.017 | 1.000 + 0.000 | 0.910 + 0.058 | 1.000 + 0.000 | 0.920 +0.006 | 0.980 +0.003 | 0.980 = 0.002 | 0.977 + 0.001
PC2 | 0.386 +£0.017 | 0.946 +0.029 | 0.796 + 0.062 | 1.000 £ 0.000 | 0.917 £ 0.006 | 0.965 +0.002 | 0.976 + 0.005 | 0.966 + 0.002
PC3 | 0.282 +£0.013 | 0.945 £ 0.054 | 0.266 + 0.041 | 1.000 + 0.000 | 0.882 +0.005 | 0.954 +0.001 | 0.893 + 0.015 | 0.953 + 0.004

obtain a predictive maintenance solution, i.e. able to detect the
progressive deterioration of industrial assets, and (ii) employ a
transfer learning mechanism, in order to exploit the anomaly
detector with data other than the ones it is trained on (e.g. dif-
ferent data of the same domain), and further reducing the costs
linked to system re-training whenever possible.
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