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Abstract: The need for high recognition performance demands increasingly complex machine learning (ML) architec-
tures, which might be extremely computationally burdensome to be implemented in real-world. This issue
can be addressed by using an ensemble learning model to decompose the multi-class classification problem
into many simpler binary classification problems, e.g. each binary classification problem can be handled via
a simple multi-layer perceptron (MLP). The so-called one-versus-one (OVO) is a widely used multi-class de-
composition schema in which each classifier is trained to distinguish between two classes. However, with
an OVO schema each MLP is non-competent to classify instances of classes that have not been used to train
it. This results in classification noise that may degrade the performance of the whole ensemble, especially
when the number of classes grows. The proposed architecture employs a weighting mechanism to minimize
the contribution of the non-competent MLPs and combine their outcomes to effectively solve the multi-class
classification problem. In this work, the robustness to the classification noise introduced by non-competent
MLPs is measured to assess in what conditions this translates in better classification accuracy. We test the
proposed approach with five different benchmark data sets, outperforming both the baseline and one state-of-
the-art approach in multi-class decomposition algorithms.

1 INTRODUCTION

Ensemble-based machine learning approaches pro-
vide the classification results as a combination of the
outcomes of different machine learning models (base
models). This strategy is aimed at improving the clas-
sification performance by averaging the error of a sin-
gle base model in the whole ensemble (Zhang and
Ma, 2012). This allows (i) using much simpler base
classifiers than a non-ensemble-based ML approach
with similar performance, thus resulting in improved
computational efficiency (Sagi and Rokach, 2018);
and (ii) providing greater robustness against overfit-
ting and local minima by differentiating the training
of the base models to better cover the solution space
(Zhang and Ma, 2012).

In this context, the differentiation of the base mod-
els is key to reduce the sensitivity of the ensemble
to the choice of the training set (Belkin et al., 2019)
and thus provide greater and more robust classifica-
tion accuracy. In (Sagi and Rokach, 2018) the authors

categorizes the strategies to differentiate base mod-
els according to which component of the classification
procedure they manipulate: input, learning algorithm,
and output. With input manipulation, the base models
are differentiated by being trained with different par-
titions of a data set, i.e., using different instances (hor-
izontal partitioning) or different features (vertical par-
titioning). With learning algorithm manipulation, the
base models are differentiated by using different algo-
rithms for each one of them, or by using the same al-
gorithm with different hyper-parameters. With output
manipulation, a single multi-class classification prob-
lem is transformed into multiple binary classification
problems, and each one of them is assigned to a base
model. This strategy is also called multi-class prob-
lem decomposition, since it decomposes the prob-
lem into different simpler sub-problems (Galar et al.,
2011). This divide and conquer approach aims at rec-
ognizing complex macro-behaviors as a combination
of simpler-to-recognize micro-behaviors (Alfeo et al.,
2017a), and allows both single (Alfeo et al., 2018)



and multiple abstraction layers for the representation
of such behaviors (Alfeo et al., 2017b).

The two main multi-class decomposition schema
are named one-versus-all (OVA) and one-versus-one
(OVO) (Goienetxea et al., 2021). Given a multi-class
classification problem, the one-versus-all (OVA) de-
composition scheme, consists of generating a sub-
problem for each class, i.e. distinguishing that class
from all the others. Via a OVO strategy, the problem is
decomposed into multiple binary classifications, one
for each possible pair of classes. In a C-multi-class
classification problem, OVA and OVO scheme results
in C and C(C−1)/2 base models, respectively. Given
its greater recognition performance, OVO scheme is
often preferred over OVA (Alfeo et al., 2021).

Still, the robustness of OVO schema may be af-
fected by the number of non-competent base classi-
fiers. In a OVO scheme, a base classifier BC is non-
competent for the classification of a sample s if the
class to which s belongs does not match any of the
classes used to train BC. Among all base classifiers in
an OVO scheme for C-multi-class classification prob-
lem, (C−1) base classifiers are considered competent
to classify a sample of class C, whereas the others are
non-competent (Galar et al., 2011).

Thus, the prediction of BC for sample s can be
unreliable and unpredictable, resulting in classifica-
tion noise that may propagate up to the final decision
via the base model’s outcomes aggregation (Galar
et al., 2015). The management of the classification
noise generated by non-competent classifiers is key
to prevent the degradation of the classification perfor-
mance. This work aims at enriching the literature of
techniques designed for this purpose.

The paper is structured as follows. In section 2,
the literature review is presented. Section 3 details
the proposed approach. The experimental results are
presented in sections 4. Finally, Section 5 discusses
the obtained results and the conclusions.

2 RELATED WORKS

Non-competent base models can be identified exactly
only by knowing apriori the class of the sample be-
ing classified. Of course, at classification time, this
information is unknown. For this reason, several ap-
proaches have been proposed to aggregate the out-
come of the base models while mitigating the effect of
the classification noise generated by non-competent
ones. According to the survey (Cruz et al., 2018),
the main strategies can be grouped as non-trainable,
trainable, and based on dynamic weighting. Non-
trainable approaches combine the outcome of the

base models by leveraging some assumptions about
the classifiers or the classification problem. For in-
stance, the most used non-trainable approach is the
majority voting strategy, which relies on the assump-
tion that all base classifiers are independent (Duin,
2002). Trainable approaches employ the outcomes of
the base models as input for another machine learn-
ing model (Cruz et al., 2010). Despite having a more
complex architecture design due to the additional
model to tune and train, these approaches usually re-
sult in greater classification accuracy when compared
to the non-trainable approaches, since the aggrega-
tion of base models’ outcome is actually data-driven
(Cruz et al., 2018). With dynamic weighting, the out-
comes of all base classifiers are weighted according
to their expected local competence and subsequently
aggregated to provide the final decision (Zhang et al.,
2019). Most of them assess the competence of a base
model on the local region of the feature space close to
the instance to classify. This region can be defined by
employing a k-NN procedure (Cruz et al., 2018). The
weighted aggregation is designed to provide the most
competent classifiers with higher contribution in the
classification outcome (Cruz et al., 2018).

Overall, choosing the best weights to be used in
the aggregation of the base classifiers’ outcome, is not
trivial at all (Costa et al., 2018). Such weights can be
identified by leveraging some prior knowledge about
the classification problem (Costa et al., 2018), or by
searching them via an optimization method, such as a
genetic algorithm (GA) (Pintro et al., 2013). How-
ever, all the aforementioned approaches apply pro-
cedures to define static weights, i.e. not adaptive to
a specific sample. With dynamic weighting instead,
the system weights the outcome of the base classi-
fiers by learning the weights directly from the data
and specializing them for each data sample. While
non-trainable approaches (e.g., a set of rules) result
in the lowest complexity, trainable approaches (e.g.
a machine learning algorithm) may result in the best
classification performance (Cruz et al., 2018). In this
context, dynamic weighting approaches can offer the
best trade-off.

Examples of dynamic weighting schemes are the
local classifier weighting by quadratic programming
(Cevikalp and Polikar, 2008), the dynamic integration
of classifiers (Jiménez, 1998), and the fuzzy dynamic
classifier aggregation (Štefka and Holeňa, 2015). A
large number of dynamic weighting schemas are ex-
tensively compared in (Zhang et al., 2017). Among
the others, the approach known as DRCWOVO (Galar
et al., 2015) has proved its effectiveness with a num-
ber of different datasets (Zhang et al., 2017). DRC-
WOVO is specifically designed for OVO multi-class



decomposition, and weights the base classifier out-
puts classifying a sample s according to its distance to
the k nearest neighbors taken from each class (Galar
et al., 2015). Given such effectiveness (Zhang et al.,
2017), DRCWOVO is employed as a term of compar-
ison w.r.t. the approach proposed in this paper.

3 ENSEMBLE ARCHITECTURE

In the OVO multi-class decomposition scheme pro-
posed in this work, the base models are designed as
multi-layer perceptrons (MLP) (Cimino et al., 2009),
the simplest yet powerful machine learning architec-
tures based on artificial neural networks (Galatolo
et al., 2021).

Being a OVO schema, each base model is trained
to distinguish between two classes, and provides as
output the class probability associated with these two
specific classes.

By weighting such probabilities and aggregating
them, a membership score MS(Ci) is computed for
each class. Finally, for sample s, the class predicted
by the proposed approach corresponds to C(s) com-
puted as argmax(MSs(Ci)) among the classes.

MSs(Ci) =
n

∑
j=1, j ̸=i

Ps
[Ci|C j ]

(Ci)∗
Ps

k−NN(Ci)+Ps
k−NN(C j)

2

(1)

As introduced in Section 1, due to the classifi-
cation noise generated by non-competent classifiers,
different classes may result in similar MS values. In
this case, given the final argmax operation used with
OVO schemas, small fluctuations in the MS values
might result in classification errors. To minimize the
MS of the wrong classes and thus increase the robust-
ness of the proposed OVO schema, the base models’
output undergoes a weighting operation (Eq. 1) to
mitigate the contribution of the base models that are
most likely to be non-competent.

In Eq. 1, Ps
[Ci|C j ]

(Ci) is the probability that a given
sample s belongs to class Ci, provided by the base
model trained on Ci and C j. The weighting factor (the
fraction in Eq. 1) exploits Ns, i.e., the close neighbor-
hood of s from the training set. The competence of
the base model trained on Ci and C j is evaluated as the
average class probability for classes Ci and C j in Ns,
obtained via the k-NN classifier. Specifically, the base
model trained with the most (less) frequent classes in
the close neighborhood, Ns, of a sample s is consid-
ered the most competent to classify s, and hence, their
outcomes are overweighted (underweighted). Such a
weighting operation propagates up to MS.

Figure 1: Proposed ensemble architecture with an exem-
plary classification problem consisting of 4 hypothetical
classes (A, B, C, D).

4 EXPERIMENTAL SETUP

The Multi-Layer Perceptrons (MLP) and the k-NN
procedure are provided via sklearn, a well-known
machine learning library in Python. The class proba-
bility is obtained via the method predict proba() pro-
vided by sklearn (Feng et al., 2018). Each MLP fea-
tures the following hyperparameters: relu as activa-
tion function, 1e-3 as alpha value, two hidden lay-
ers of sizes 120 and 70, lbfgs as the solver, 10000 as
the maximum number of iterations, 1e-6 as tolerance
value. The k-NN procedure features the cosine dis-
tance as distance measure, and the number of nearest
neighbors equal to 5.

We test the proposed approach by comparing it
with the standard weighting-based OVO approach,
and the state-of-the-art weighting-based OVO ap-
proaches, e.g. DRCWOVO (Galar et al., 2015) fea-
turing the same configuration for the k-NN procedure.
For each experiment a 5-folds cross validation is em-
ployed as experimental framework.

To prove the generality of the proposed approach
it is tested on a number of different data sets. Those
are characterized by a different number of attributes,
classes and instances. Specifically, the data sets used
in this research work are listed below, and they are ob-
tained via the publicly available and well-known UCI
repository (Bay et al., 2000).

• ecoli: the data addresses 6 different protein local-
ization sites. The classes are not uniformly dis-
tributed.

• glass: the data, provided by the USA Forensic
Science Service, defines the oxide content (i.e.



Na, Fe, K, etc.) of 6 types of glass. The attributes
of each instance are real values.

• page-blocks: the data describes the blocks of the
page layout of a document obtained via a segmen-
tation process. The attributes of each instance are
real values.

• shuttle: the data describes different shuttles’ type
of control via numerical attributes. Approxi-
mately 80% of the data belongs to one single
class.

• zoo: the database describes via 17 boolean-valued
attributes 7 groups of animal species.

We summarize the main characteristics of these data
sets in Table 1.

Table 1: Characteristics of the experimental datasets.

Dataset #Classes #Samples #Attributes
ecoli 8 336 7
glass 6 214 9
page-blocks 5 5473 10
shuttle 6 58000 9
zoo 7 101 17

The classification accuracy is employed as the
main classification performance metric (Eq. 2), which
is defined as the ration between the correct classified
predictions and the total number of predictions.

Accuracy =
Number o f correct predictions
Total number o f predictions

(2)

The CompetenceRein f orcement (CR) measure is
proposed (Eq. 3) to evaluate the effectiveness of the
weighting operation in minimizing such classification
noise.

CompetenceRein f orcements =
MSs(Cs)

∑
#classes
j=1 MSs(C j)

(3)
The CR for sample s is defined as the ratio of the

MSs of the true class, Cs (i.e., MSs(Cs)) and the sum
of all membership score (MS) values associated with
s (i.e., with all classes). CR ranges between one (best
case) and zero (worst case). The higher the CR value
the lower the MS associated with the wrong classes,
which may be due to the classification noise provided
by non-competent classifiers.

5 RESULTS AND DISCUSSION

The table 2 shows the results obtained in terms of av-
erage accuracy and standard deviation with a 5 cross
fold validation approach on the data sets considered.

When considering the ecoli, glass, page-blocks
and shuttle data sets, it can be seen that there is a pro-
gression in the improvement of the results obtained
with the OVO, DRCWOVO and the proposed ap-
proach, respectively.

Considering the data sets with the greatest num-
ber of samples: page-blocks and shuttle, all the
three approaches perform very well, proving how the
proposed decomposition scheme handles effectively
these classification problem despite the different the
number of classes, their balance and the number of at-
tributes in the data set. Page-blocks is the only dataset
with real values attributes and so it may result in a
more complex classification problem than the others.
In this case, the performance gain obtained by using
the proposed approach is significant, reaching 96.7%
accuracy (about 10% more of the other approaches).

With the zoo data set, which features the small-
est number of samples, and the largest number of at-
tributes (all boolean values), the OVO scheme results
in 94.1% accuracy, i.e. on average is 7% more accu-
rate than DRCWOVO. Again, the introduction of the
proposed approach resulted in even better recognition
performances by reaching 95% and reducing the stan-
dard deviation from OVO’s 6.4% to 3.5%.
Table 2: Average % accuracy ± standard deviation over 5
repeated trials. The result with the best average accuracy is
in bold.

Dataset OVO DRCWOVO Proposed
Approach

ecoli 71.4 ± 7.3 82.7 ± 5.0 86.0 ± 2.5
glass 58.3 ± 9.8 64.0 ± 5.2 70.0 ± 4.7
pageblocks 84.6 ± 3.8 86.5 ± 1.6 96.7 ± 0.3
shuttle 99.6 ± 0.1 99.7 ± 0.1 99.8 ± 0.01
zoo 94.1 ± 6.4 87.1 ± 2.6 95.0 ± 3.5

As mentioned in Section 1, OVO decomposition
scheme performances can be affected by the classi-
fication noise generated by the non-competent clas-
sifiers. Such a noise may propagate up to the final
prediction, i.e. increasing the MS value for the wrong
classes, and increasing the sensitivity of the schema
to small MS fluctuations (Section 3). Table 3 reports
the CR values obtained with the proposed approach,
standard weighting-based OVO, and DRCWOVO.

When compared to the OVO approach, both k-
NN-based weighting approaches (DRCWOVO and
the proposed approach) are able to effectively reduce
classification noise (Table 3). Moreover, passing from
OVO to DRCWOVO to the proposed approach corre-
sponds to a progressive improvement of the CR val-
ues (Table 3) and this corresponds to a gain in terms of
recognition accuracy (Table 2). This confirms that the



Table 3: Average % CR ± standard deviation over 5 re-
peated trials. The result with the best average % CR is in
bold.

Dataset OVO DRCWOVO Proposed
Approach

ecoli 15.7 ± 0.4 18.4 ± 0.6 26.3 ± 1.2
glass 19.3 ± 1.0 20.3 ± 0.5 24.2 ± 1.1
page-blocks 34.6 ± 3.0 44.9 ± 0.6 72.7 ± 0.6
shuttle 19.1 ± 0.2 30.4 ± 0.2 64.4 ± 0.01
zoo 14.6 ± 0.5 16.7 ± 0.5 24.2 ± 0.02

improvement in the recognition performance is actu-
ally correlated to the capability of reducing the clas-
sification noise.

The number of classes in the recognition problem
and the values of competence reinforcement exhibit a
negative correlation. This is explained by consider-
ing that the number of classifiers increases quadrati-
cally with respect to the number of classes; this corre-
sponds to a greater number of non-competent classi-
fiers, and thus to a greater number of terms in the de-
nominator of the competence reinforcement formula.

This is evident considering the lower CR values
with the data sets corresponding to the highest num-
ber of classes: ecoli, zoo, and glass. On the other
hand, with the page-blocks data set (which features
the lowest number of classes) the proposed approach
reaches CR values of about 72.7%.

Finally, it is provided an evaluation of the impact
of varying the k-values within the k-NN procedure
for the proposed approach and DRCWOVO, as this is
the main hyper-parameter of the two weighting strate-
gies. The figure 2 shows the results in terms of aver-
age accuracy over 5 cross-fold validation on the data
sets analysed with the proposed approach and DRC-
WOVO with three different k-values in 3, 5, 10.

As k varies, the proposed approach results to be
more accurate than DRCWOVO in all the data sets
analyzed.

Considering the proposed approach, the variation
of the hyper-parameter k introduces a negligible vari-
ation on the average accuracy, especially in the page-
blocks, shuttle, and zoo data sets. On the other hand,
the choice of k results in a difference between mini-
mum and maximum accuracy value of approximately
2.97% for ecoli and 7.01% for glass data set. Instead,
DRCWOVO approach results in a maximum accuracy
variation due to different values of k on the page-
blocks dataset, 7.12%, and the zoo dataset, 5.95%.
Overall, these results suggest that DRCWOVO is
more sensitive the right choice of k with respect to
the proposed approach.

The usage of the proposed weighting approach
positively impacts the classification performance as

Figure 2: Accuracy scores on the different UCI data sets of
the proposed model and DRCWOVO varying the k-value of
the k-NN classifier.

can be seen by comparing the proposed approach’s
and the OVO’s results. As k k varies our approach
consistently outperforms OVO. Considering DRC-
WOVO instead there is a loss of accuracy in the zoo
dataset with k values different than 3. These results in
lower performance than the simple OVO approach.

6 CONCLUSION

In this paper, a new MLP ensemble scheme is pro-
posed. The scheme features a number of MLPs
trained in an OVO fashion and a k-NN procedure to
weight their outcomes and obtain the final classifica-
tion.

The proposed scheme was tested with 5 bench-
mark data sets: ecoli, glass, page-block, shuttle, and
zoo, through a 5 cross-fold validation methodology
and compared with two other decomposition schema:
OVO and DRCWOVO. The comparison metrics con-
sidered were the recognition accuracy, and compe-
tence reinforcement to measure the ability of these
OVO decomposition schemes of handling the classi-
fication noise provided by non-competent classifiers.

The results confirm that the proposed approach
achieves better results in terms of accuracy than other



state-of-the-art methods. Furthermore, considering
the results obtained by measuring competence rein-
forcement, the proposed scheme is less affected by
classification noise due to non-competent classifiers
as it produces better CR results than state-of-the-art
approaches.

Future developments of the architecture will in-
clude testing on real-world data sets, to prove its ef-
fectiveness also in real-world applications. Especially
in this context, it would be useful to have an ex-
plainable artificial intelligence architecture, and since
the proposed approach leverages a number of the bi-
nary base classifiers that are specialized on the deci-
sion boundary between a pair of classes, those can be
fruitfully employed to generate counterfactual expla-
nations, i.e. motivate why a given prediction belongs
to a given class rather than the other one.
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