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Abstract

Recent miniaturization in Unmanned Aerial Vehicles (UAVs) technology en-
courages the use of many small UAVs for search missions in unknown environ-
ments, provided that the autonomous and adaptive coordination logic can be
effective. In this research field, biologically inspired metaheuristics have been
proposed to mimics swarms, flocks, and other coordination schemas. The design
and management of such systems is a research challenge when considering (i)
combination and optimization of multiple metaheuristics and (ii) enhancements
of biologically inspired metaheuristic through technological advances. In this
paper the swarm coordination of UAVs employed in target search is based on
flocking and stigmergy, to provide robust formation control and dynamic envi-
ronmental information sharing, respectively. The design of both metaheuristics
takes into account UAVs equipment, and the coordination logic is adapted to
the mission by means of a differential evolutionary algorithm. This algorithm
optimizes the aggregated structural parameters of all metaheuristics to allow the
most efficient coordination with respect to the mission environment. Some pos-
sible enhancements of stigmergy are studied by simulating target search tasks
on synthetic and real-world scenarios.

Keywords: UAVs, Swarm Intelligence, Stigmergy, Flocking, Differential
Evolution, Distributed Targets Search

1. Introduction and motivation

Thanks to recent technological advancement, Unmanned Aerial Vehicles
(UAVs) have become more and more accessible and are now increasingly utilized
across a variety of domains, including exploration of unknown territories and
monitoring of hazardous environments. Indeed, by remotely controlling a UAV,
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an operator on the ground can exploit the UAV sensing capabilities while ad-
dressing the so-called D3 missions (“dull, dirty and/or dangerous” (Whitehead
et al., 2014)), where the access to humans is limited, dangerous or impossible.
A number of considerations discourage the use of single UAV in favor of UAVs
group (Whitehead et al., 2014). To use a unique UAV results in a single point
of failure: an unpredictable hardware and/or software fault can prevent the
mission completion (Suárez Fernández-Miranda et al., 2016). Moreover, the use
of a single UAV demands high requirements in terms of reliability and durabil-
ity, which usually means higher costs of design, construction, and maintenance.
Considering the use of multiple UAV, a relevant issue is to reduce the coordina-
tion complexity demanded by centralized logic solutions (McCune et al., 2013).
In a decentralized approach, a certain degree of autonomy can be exhibited by
the UAVs swarm (Meng et al., 2014).

In its simplest form, a swarm of UAVs is characterized by a large num-
ber of homogeneous individuals (agents) with local communication, sensing and
actuation capabilities (Maza et al., 2015). Such systems present different ad-
vantages: (i) it allows parallel/collective scan by exploiting the principles of
self-organization, similarly to natural swarm; (ii) it is scalable, since by increas-
ing the number of agents in the swarm its effectiveness is poorly compromised;
(iii) it is flexible, in fact, due to the simplicity of a single agent logic, it can be
adapted according to the scenario; (iv) it is robust, and then the task accom-
plishment is not affected by the fault of some swarm members (Schmickl et al.,
2011) (Aznar et al., 2014).

The swarm behavior can be designed by employing three main conceptual
frameworks (Brambilla et al., 2013): (i) collective decision making, in which
UAVs aim at achieving consensus on a collective strategy, in order to maxi-
mize the performance of the swarm; (ii) spatially organized behavior, in which
UAVs aggregate according to a set of spatial constraints to arrange themselves
following specific patterns, chains, or structures; (iii) navigation-based behavior,
in which each UAV follows a set of simple behavioral rules to steer the whole
swarm and cooperatively explore an environment. The latter is mostly used for
search and coverage task (Brambilla et al., 2013) and is frequently designed by
exploiting biologically inspired approaches (Alfeo et al., 2018).

In this paper the swarm behavior is modeled considering and comparing
two different paradigms, namely biological behavior, which mimics social ani-
mal metaheuristics, and computational behavior, which considers enhancements
exploiting UAVs information technology. Our aim is to verify whether some
enhancements allow a reduction of complexity and a more effective optimiza-
tion of the structural parameters. Indeed, the digital environments can allow
a specialization of biological models able to simplify both mechanisms and dy-
namics and then the research space. Nevertheless, this computational behavior
keeps the essential benefits of the original biological behavior. Specifically, the
biological behavior focuses on the following aspects:

(i) biological stigmergy : used to release an attractive/repulsive potential in
areas where targets have been/have not been found (Sauter et al., 2005a).
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An agent leaves a mark in the environment while performing an action,
whereas other agents, by sensing the mark, are stimulated to perform
an action. The mark dynamics is ruled by the chemical diffusion and
evaporation model ;

(ii) biological flocking : used to organize a flexible agents formation for collabo-
rative sensing (Kaminka et al., 2008). The best known Reynolds model for
flocking (Reynolds, 1987), is based on the rules of alignment, separation,
and cohesion: alignment aligns the agents heading to the average head-
ing of nearby agents (flock mates); separation prevents the overlapping
of sensing areas by maintaining a minimum distance among flock mates;
cohesion directs each agent towards the center of the flock mates;

(iii) biological sensing/actuation: target sensing occurs if the agent is over
the target; obstacle sensing occurs if the obstacle is one step forward;
pheromone release occurs at the same agents position; agent can be either
still or moving (without incremental speed and rotation control). Finally,
olfactory perception simply reflects the pheromone intensity (without over-
stimulation control).

The computational behavior characterizes the following aspects:

(i) computational stigmergy : since the digital pheromone is maintained in a
virtual space, called pheromone map, it can have an instant diffusion, to
immediately propagate the environmental information to nearby UAVs;
furthermore, a linear evaporation and a streamlined shape allow a better
control of the aggregated pheromone potential;

(ii) computational flocking : the simultaneous localization and mapping tech-
nology allows different-scaled flocking, ranging from visually-based flocks
to large-scale localization-based formations, across physical barriers.

(iii) computational sensing/actuation: long-range sensing allows detection of
remote targets and obstacles; as a consequence, computational pheromone
can be released on a target remote with respect to the UAV position;
moreover, a UAV can accelerate, decelerate and keep cruise speed while
obstacles are not detected. Finally, olfactory receptors can decrease in
sensibility over time to prevent overstimulation (olfactory habituation).

In this work, these behavioral models are exploited to solve the target search
problem. According to (Senanayake et al., 2016) target search is the discovery of
targets located in an unstructured environment, with no prior knowledge about
their location and about the obstacles layout. The quality of the process can
be measured by minimizing the overall time needed for completing the mission.
It is worth noting that the mission duration does not include phases external
to the search problem, such as the deployment time and the return time. A
target search mission with swarms of robots (agents) can be defined according
to (i) the number of targets and agents; (ii) the mobility of targets; (iii) the
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complexity of the environment; (iv) the prior knowledge about the target; (v)
the type of swarm coordination. The proposed approach has been experimented
in a proper simulation environment where synthetic and real-world target search
missions are modelled.

Specifically, structural aspects of UAVs (such as speed, size, endurance, field
of sight, collision avoidance, and so on) are fixed according to the type of UAV
usually employed for each type of mission (land-mine search, gas leakage detec-
tion, illegal dumps discovery, etc.).

Externally to the simulator, a Differential Evolutionary (DE) algorithm con-
trols the models aggregated parameters to search the most efficient coordination
setting. The optimization process is an intrinsic part of the swarm: in some
sense only after the optimization the initial set of UAVs becomes a swarm, i.e.,
an effective organism specialized for the type of mission.

The paper is structured as follows. Related works are presented in Section
2. In Section 3, the design of metaheuristics for UAVs coordination is detailed.
Section 4 covers the design of missions and quality measures. Experimental
results are presented and discussed in Section 5. Finally, Section 6 summarizes
conclusions and future work.

2. Related work on swarm metaheuristics for target search

A lot of research has been developed in the field of metaheuristics for tar-
get search employing a swarm: this research is characterized by heterogeneity
of goals, methodologies and scenarios. Some recent surveys (e.g., (Senanayake
et al., 2016)) attempted to create a taxonomy discussing the qualitative differ-
ences between the proposed approaches. In this section some relevant works are
briefly referred and summarized for the interested reader.

2.1. Stigmergy and Flocking metaheuristics

Among the biologically inspired approaches existing in the literature, stig-
mergy and flocking are widely used to coordinate a swarm of UAVs in target
search tasks (Parunak et al., 2002).

Authors in (Sauter et al., 2005b) proposed a swarming schema based on
stigmergy, in which virtual pheromones are deposited on a pheromone map and
sensed by agents. Specifically, movements and action decisions are taken by the
walker agents , whereas avatar agents are committed to making estimation in ab-
sence of sensor information. The schema is applied to many scenarios, including
target acquisition. In (Brust et al., 2017) the authors design a multi-hop cluster-
ing procedure combined with stigmergy to provide an optimal solution to a set
of objectives, among which target detection and tracking. Moreover, they pro-
pose a pheromones model including both attractive and repulsive pheromones,
to mark detected targets and visited areas, respectively. Another application of
this kind of pheromones model is proposed in (Atten et al., 2016), for similar
missions.

Flocking was first proposed by Reynolds (Reynolds, 1987). An example is
proposed in (Vásárhelyi et al., 2014) where the authors present a decentralized
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coordination strategy for UAVs based on flocking. Flocking is used to maintain
UAVs in communication range and to coordinate themselves during their task.
In (Hauert et al., 2011) a flock of multiple fixed-wing UAVs flying at a relatively
large distance from each other is proposed. A flocking strategy is applied also
in (Quintero et al., 2013) where UAVs autonomously navigate in a search area.

A number of research works have proposed enhancements for such biolog-
ical metaheuristics (Bayındır, 2016). The problem is that an enhancement of
swarm metaheuristic can make the UAVs behavior problem-dependent, i.e., it
can transform the metaheuristic into a heuristic. In general, a heuristic is tai-
lored to the mission at hand, to take full advantage of the particularities of the
problem. As a consequence, an optimal solution cannot be provided for different
circumstances. In fact, it is well known that any problem-dependent heuristic
biases the system, and make it less scalable and less manageable. In contrast,
metaheuristics are problem-independent techniques that do not take advantage
of domain knowledge and can be used as general purpose problem solving tools.

For example, a scenario of land-mines search in a forest is characterized by
numerous and small obstacles (trees), with single targeted cells (landmines). A
good strategy for this type of mission is to increase the number of isolated UAVs,
and to provide them with small stigmergy range. In contrast, a scenario of early
wildfire detection, or illegal dump discovery in rural areas, are characterized by
few obstacles and clustered targeted cells. For this type of mission, a good
strategy is to create large and sparse flocks, with large stigmergy range.

A metaheuristic may accept a temporary deterioration of the solution, for
a better exploration of the solution space getting to a near-to-global optimum.
Obviously, a parametric tuning is necessary to adapt a metaheuristic to the
problem at hand and a poor quality tuning may lead to unpredictable result.
For example, stigmergy with large and persistent pheromone might attract too
much agents leading to inefficient search. Flocking with large visibility radius
might result in a very rigid formation. Since in multi-agent systems the inter-
action of the agents is not simply deducible from the properties of the compo-
nents, an important technique to study the global properties and their level of
predictability is simulation that can be used also when proposing a variant of
a metaheuristic. The following works summarize some variants of flocking and
stigmergy used for multi-UAVs systems.

In this context, in (Paradzik and İnce, 2016) with respect to biologically
inspired pheromone model, which is usually attractive/repulsive, the authors
encode specific information as pheromone flavors. In (De Benedetti et al., 2017)
the self-organization of a flock of UAVs employed on an area coverage mission
is achieved by allowing short-range communication among UAVs through gos-
siping. In (Qiu and Duan, 2017) the authors propose a coordination strategy
based on pigeon flocking model. To avoid obstacles, the highest individuals in
the flock hierarchy are informed about the obstacles position, providing a path
planning strategy based on an artificial potential field.
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2.2. Differential evolutionary optimization

The particularity of the approach proposed here is that the flocking and stig-
mergy metaheuristics make, together with the sensing/actuation, an integrated
logic which is parameterized as a whole by a differential evolution optimization.
It is worth noting that in this case the search space includes the space of the
combined metaheuristics. In this space, stigmergy and flocking can be rein-
forced/weakened as well as enabled/disabled or simply modified. For example,
flocking with visibility radius equals to zero disables the flocking itself. Simi-
larly, stigmergy with mark radius equals to zero or evaporation rate equals to 1
means no stigmergy at all.

Thus, an adaptation process can search the best aggregation of metaheuris-
tics according to the specific mission and performance measure, which can be
tested in the simulated environment, exploring solutions which are normally im-
possible to consider by human design (Singh et al., 2017), (Bloembergen et al.,
2015).

This is confirmed by research works such as (Cimino et al., 2015a) in which
an adaptation mechanism tuning the swarm coordination is needed to fit the
current scenario layout. Another example of adaptive coordination is proposed
in (Labella et al., 2006) whose authors propose a control system for swarm
robots involved in an object retrieval task. By changing the probability of
switching between different individual statuses and strategies, the authors show
the relevant improvements of efficiency of real and simulated robots. Authors
in (Colby et al., 2015) present a control and coordination strategy for a team of
UAVs in an environmental surveillance domain by co-evolving neural network
controllers with different fitness evaluation functions.

In (Ramirez-Atencia et al., 2017) the authors present a Multi-UAV Coopera-
tive Mission Planning, via a hybrid approach based on Multi-Objective Genetic
Algorithm (MOGA) and Constraint Satisfaction Problem (CSP). The CSP is
used when some constraints are partially fulfilled, whereas the MOGA is used if
all constraint are fulfilled. The authors tested the effectiveness of the proposed
approach over 16 mission scenarios, with different complexities and under dif-
ferent mission situations.

In the literature, the metaheuristics of stigmergy and flocking have been ex-
tensively adopted for solving computational problems that can be reduced to
finding sub-optimal paths through a problem space. The problem space can be
either a physical space (e.g. vehicle routing) or a logical space (e.g. schedul-
ing). In our approach, we adopt stigmergy and flocking for coordinating the
target search in the two-dimensional physical space. A different problem is the
parametric optimization of stigmergy and flocking, which is carried out in a
multi-dimensional logical space of parameters. For this kind of problem, many
stochastic optimization algorithms, such as Genetic Algorithm (GA), Differen-
tial Evolution (DE), Particle Swarm Optimization (PSO), Ant Colony Opti-
mization (ACO) can be used. In the literature, a number of evolutionary com-
putation algorithms have been proposed, and many efforts have been devoted
for qualitative and quantitative comparisons of such algorithms. As a result,
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researches on comparative analyses over benchmark problems, under the same
solution representation and number of function evaluations, are already avail-
able. Taking into account such researches, we adopted the DE algorithm, which
is one of the most powerful stochastic real-parameter optimization algorithms
(Das and Suganthan, 2011), (Agrawal and Kaur, 2018). Compared with other
popular methods such as GA and PSO, DE has attracted more attention for
continuous optimization problems for its simplicity, efficiency, and adaptivity
(Kachitvichyanukul, 2012), (Cimino et al., 2015b), (Jones and Bouffet, 2007).

3. Design of environment and metaheuristics

This section focuses on modeling the various aspects of UAVs coordination
for a generic target search mission. Basically, the search environment contains
UAVs, targets, and obstacles. The coordination logic of a UAV is based on
collision avoidance, stigmergy, flocking and evolution.

3.1. Exploration simulator and basic collision avoidance

As discussed in the previous section, the design and the optimization of the
coordination logic is highly supported by an exploration simulator. The first
point is to distinguish between flight simulator and exploration simulator. A
flight simulator focuses on control logic: it recreates the equations that govern
UAV fly, how it reacts to external factors such as air density, turbulence, wind
shear, cloud, precipitation, etc. In contrast, an exploration simulator focuses
on coordination logic, assuming that external factors are already managed. It
represents the exploration at a different scale, which depends on the spatial
and temporal resolution needed to detect the target, and recreates at that scale
obstacles and target distribution. Consequently, the basic drone movements and
collision avoidance are simulated for the sole purpose of exploration. Thus, the
drone acceleration (and deceleration) from zero to the cruise speed (and vice
versa) is supposed to be linear assuming some conventional control logic and
normal weather conditions. This occurs even when the exploration is made at
small scales, such as for gas leak detection.

For this reason, the collision avoidance strategy is based on a standard ap-
proach (DJI, 2016), (DJI, 2017). Specifically, the UAV obstacle vision is set
via two parameters, i.e., ObstacleVision and ObstacleVisionAngle, creating a
circular sector area called ObstacleVisionArea, whose vertex is centered on the
UAV. When an obstacle or another UAV is detected in the ObstacleVisionArea,
the UAV changes its heading and speed to avoid the obstacle. With this model,
the area that will be occupied by the UAV in the next instant can be easily
calculated via its velocity and its heading. Thus, the multiple UAVs can be ac-
cordingly organized in the current instant so as to avoid overlapping with UAVs
and obstacles in the next instant.

Requirements about velocity and heading information propagation can be
fulfilled by current aerial networks technologies for target search applications
(Hayat et al., 2016). Indeed, the coordination problem can be categorized as

7



(a) (b)

Figure 1: (a) Illegal Dump, satellite image (Google Maps), (b) Illegal Dump, vector image

delay-tolerant, since continuous connectivity is not a necessity, and a periodic
data transfer (i.e., intermittent connectivity) is sufficient. On the other hand,
since an exploration simulator focuses on coordination logic, it assumes that
flight control factors are locally managed, by modeling the exploration problem
at a large spatial-temporal scale. By assuming that the UAVs already have
autonomous obstacle detection capability, it follows that Beyond-Line-of-Sight
connectivity with the ground station and GPS positioning are adequate to con-
trol and intervene for any changes during the mission, and to get status updates
(Hayat et al., 2016).

It is of the outmost importance to highlight that the layouts of interest are
not arbitrary. They are rather based on some realistic applications of target
search carried out by UAVs swarm, where maze-like layouts with possible dead-
locks are not under consideration. For this reason, the coordination logic is not
specifically designed for dealing with trap situations within the flight time of
small UAVs.

3.2. Stigmergy metaheuristics

A single target detection activity corresponds to the identification of any
part of it that is not already discovered. Specifically, the search problem is
formulated by discretizing the environment into a set of cells. Each target is
stationary and usually covers many cells. For example, in the case of a land
mine a single targeted cell corresponds to a single target, but illegal dumps and
gas leaks cover multiple targeted cells.

Fig. 1a and Fig. 1b show an example of abusive trash map in Paterno (Italy),
and the corresponding vector image represented in the discretized environment,
respectively (Cabreira et al., 2019). Here, obstacles (buildings and trees) are
represented in dark gray, whereas targets are represented as red points. Drones,
represented as purple triangles, are placed at the corners and are oriented to-
wards the center of the area.
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An efficient strategy in target search is to quick survey the area and to better
explore only locations characterized by some circumstantial evidence (Kuyucu
et al., 2015). This strategy requires that drones are dynamically arranged so as
to be efficiently engaged when some member detects a targeted cell. For this
purpose, a UAV detecting a targeted cell releases a virtual pheromone mark
that acts as an attractive potential on neighboring UAVs, for a limited time
established by evaporation.

In the biological behavior, the targeted cell is detected by an UAV only
when such UAV is over it, and the mark is released at the same position. In
contrast, in the computational behavior the UAV sensor has a range and angle
of sensing, determining a remote detection; moreover, the pheromone mark can
be released remotely with respect to the current UAV position (Fig. 2a). In
the biological behavior, the pheromone is released on a single cell and diffused
progressively on neighbor cells according to a chemical expansion model. Such
expansion introduces transmission delay and complex dynamics that make the
cooperation inefficient (Cimino et al., 2016). In the computational behavior, the
pheromone deposit is instantly diffused, with a shape whose gradient is designed
to attract UAVs towards a certain area around the target (Cimino et al., 2016).

As an example, Fig. 2b shows a UAV detecting pheromone within a circular
area defined by OlfactionRadius. Such UAV adjusts its heading to the highest
pheromone intensity. When a dense group of targeted cells is discovered, to
allow an efficient UAV evacuation another metaheuristics is enabled: the Olfac-
toryHabituation, the time after which the UAV is temporarily unable to perceive
pheromone (Fig. 2c).

According to the above requirements, the pheromone mark is modeled as in
Fig. 2d. Its shape is a truncated cone determined by TopRadius, BottomRadius,
and markIntensity (height). Pheromone marks can aggregate in pheromone
tracks. The track evaporates over the time: every tick, its intensity is linearly
reduced by a given amount (evaporationRate). Formally, the track intensity at
the instant k can be described by Formula 1:

Track(k) = Track(k−1)+Mark(k)−{evaporationRate ·markIntensity} (1)

Figure 2: Computational Stigmergy. Pheromone Release (a), Pheromone sensing/attraction
(b), Olfactory habituation (c), Pheromone Mark Implementation (d)
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3.3. Flocking metaheuristics

Flocking behavior is based on a circular sector shaped sensing area repre-
sented in Fig. 3, and divided into three subareas as in Fig. 3a. Specifically,
(i) if one or more UAVs (flockmates) are within the Separate Area (defined by
FlockAngle and SeparationRadius), the UAV turns away from their barycenter
by (at most) MaxSeparationTurn (Fig. 3b). The separation reduces the over-
lapping of UAVs sensing areas which causes a less efficient search. (ii) if the
separate area is free, and some flockmates are in the strip between SeparationRa-
dius and AlignRadius (Fig. 3c), the UAV turns towards the average heading
of the flockmates, by at most MaxAlignTurn. (iii) if both the separate and the
align areas are free, and some flockmates are in the strip between AlignRadius
and CohereRadius, the UAV turns to point toward their barycenter, by at most
MaxCohereTurn (Fig. 3d). This procedure can provide a sensible improvement
to the search strategy in (Cimino et al., 2016), by reducing the number of iso-
lated UAVs when the collaborative search is convenient. Indeed, an isolated
UAV performs a random walk characterized by small random turns of at most
MaxRandomTurn. Specifically, an agent is considered isolated if no other agents
are located within the cohere radius. An example of communication model for
this purpose is based on Beyond-Line-of-Sight communication with the ground
station and global positioning, to get status updates. In the example, it is as-
sumed that the agent has autonomous obstacle detection and relatively long
range sensing capabilities. Thus, the flocking problem can be categorized as
delay-tolerant, continuous connectivity is not a necessity, and a periodic data
transfer (via intermittent connectivity) is sufficient for flocking (Hayat et al.,
2016).

Figure 3: Computational Flocking. Flocking Procedures Areas (a), Separate (b), Align (c),
Cohere (d).

3.4. Metaheuristics aggregation and its evolution

Every tick, a UAV executes the logic represented in Fig. 4. Here, four vertical
lanes are shown: input parameter, coordination logic, actuation logic and output
parameter. On the other side, the five horizontal lanes are: target detection,
pheromone attraction, flocking, collision avoidance and finally movement.
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Figure 4: The metaheuristics aggregation carried out by a UAV.

Basically, the UAV checks whether the cell is targeted, and in such case
releases a pheromone deposit. Then it tries to detect the existing pheromone
and, if missing, it tries to detect flock mates (phase I). In case of detection
of pheromone or flock mates, the heading is modified accordingly. Otherwise,
phase II is executed, consisting in collision avoidance rules. Finally, one step
movement is made (phase III). As a consequence, (i) the collision prediction,
when occurring, cancels the effects of other rules, and (ii) the pheromone detec-
tion, when occurring, does not allow the execution of flocking rules.

As an example, Fig. 6 shows a simulation snapshot with examples of flocks,
targets and pheromone. Fig. 4 shows some significant snapshots of a target
search process. Here, after the first targeted cells discovered, the pheromone
increases its intensity thanks to other attracted UAVs, allowing the incremental
discovery of other targeted cells.
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Figure 5: A simulation snapshot with flocks, targets and pheromone deposit.

Figure 6: Some significant snapshots of target search. Tick: 10; targeted cells discovered: 2
(a). Tick: 14; targeted cells discovered: 4 (b). Tick: 18; targeted cells discovered: 9.

Table 1 summarizes the aggregated parameters of flocking and stigmergy.
To find the best parameters that minimizes the duration of a specific mission
is an optimization task. For this purpose, we exploit an evolutionary algorithm
(Cimino et al., 2016). Among the different evolutionary algorithms, Differential
Evolution (DE) exhibits excellent performances both in unimodal, multi-modal,
separable, and non-separable problems. Moreover, DE exhibits both simplicity
and efficiency in global optimization over continuous spaces (Das and Sugan-
than, 2011). As a performance measure, the mission duration is considered.
Indeed, to reduce the flight time is the critical aspect of this kind of missions,
due to the limited duration of the UAVs batteries.

The performance evaluation of a single solution involves a simulation of the
entire mission. In addition, some level of indeterminism is contained in results,
due to the level of randomization in the UAV turning. Thus, each evaluation is
carried out three times (repeated trials). To sensibly reduce the computation
time of the optimization, without scarifying a lot of accuracy, the mission goal
can be considered achieved when the 95% of the targets has been found. For all
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the above reasons, for a given set of parameters, the average mission achievement
time is calculated over 3 repeated simulations in order to determine the fitness
value.

Table 1: Stigmergy and Flocking parameters.

Procedure Parameter Name Measure
Stigmergy MarkTopRadius cells
Stigmergy MarkBottomRadius cells
Stigmergy MarkIntensity unit
Stigmergy EvaporationRate ratio
Stigmergy OlfactoryHabituationTime ticks
Stigmergy OlfactionRadius cells
Flocking FlockAngle degree
Flocking SeparationRadius cells
Flocking MaxSeparationTurn degree
Flocking AlignRadius cells
Flocking MaxAlignTurn degree
Flocking CohereRadius cells
Flocking MaxCohereTurn degree
Flocking MaxRandomTurn degree

3.5. Evolutionary optimization of the aggregated metaheuristics

The DE variant adopted in this work is summarized by the pseudocode
presented in Algorithm 1. More formally, in a simulated scenario (or mis-
sion), the swarm Si explores an environment where Obstacles and Targets
are statically specified. AttractivePheromones and RepulsivePheromones are
dynamic structures released when an UAV is, and respectively, is not, positioned
on an unknown target. Let K be the number of aggregated parameters. In DE,
Si is a solution represented by a real K-dimensional vector called genotype pi.
The search time returned by the simulated mission is used as a fitness of the
solution, fi. The DE algorithm has at least two hyper-parameters: the scaling
factor Fε[0, 2] from which results the mutant vector, and the crossover probabil-
ity CR. The smaller CR the higher probability to produce a vector that is more
similar to the target vector rather than to the mutant vector. More formally,
Algorithm 2 and Algorithm 3 define the mutation and the crossover operators,
respectively.
Specifically, DE starts with a population P (0), made by N candidate solu-

tions, p
(0)
i , randomly generated under user-specified parametric constraints. At

each iteration t, and for each genotype p
(t)
i of the current population P (t) a

mutant vector m is created by applying the mutation of randomly selected

members. Then, a trial vector p∗i is created by crossover of m and p
(t)
i .

Subsequently, the population is modified selecting the best fitting vector be-
tween the fitness of the trial vector (f∗i ) and the fitness of the initial geno-

type (f
(t)
i ). When the termination criterion is true, i.e., number of iterations
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performed or adequate fitness reached (Das et al., 2016), the vector charac-
terizing the swarm with the best fitness (i.e. the shortest search time) in
the current population is considered as the optimal swarm parameterization.

Algorithm 1: Differential Evolution Algorithm

function DifferentialEvolution(Obstacles, Targets, AttractivePheromones,
RepulsivePheromones)

t = 0;

P (0) = initializePopulation();

for each genotype p
(0)
i in P (0) do

S
(0)
i = genotypeToSwarm(p

(0)
i );

f
(0)
i = simulateMission(S

(0)
i , Obstacles, Targets, AttractivePheromones,

RepulsivePheromones);

do

for each genotype p
(t)
i in P (t) do

m = generateMutant(P (t), p
(t)
i );

p∗i = binomialCrossover(p
(t)
i , m);

S∗i = genotypeToSwarm(p∗i );
f∗i = simulateMission(S∗i , Obstacles, Targets, AttractivePheromones,
RepulsivePheromones);

for each genotype p
(t)
i in P (t) do

if (f∗i < f
(t)
i ) then

p
(t+1)
i = p∗i ; f

(t+1)
i = f∗i ;

else

p
(t+1)
i = p

(t)
i ; f

(t+1)
i = f

(t)
i ;

f
(t+1)
min = min{f (t+1)

1 , ..., f
(t+1)
N };

t = t + 1;

while (terminationCriterion(f
(t)
min,t) = false);

return genotypeToSwarm(p
(t)
min);

Algorithm 2: Mutant vector generation

function generateMutant(P (t), p
(t)
i )

p′ = randomExtraction(P (t) \{p(t)
i });

p′′ = randomExtraction(P (t) \{p(t)
i ,p′});

p′′′ = randomExtraction(P (t) \{p(t)
i ,p′,p′′});

return p′ + F · (p′′ - p′′′);
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Algorithm 3: Binomial crossover

function binomialCrossover(p
(t)
i , m)

k = randomInteger(1, K);

for each j-th gene p
(t)
j,i in p

(t)
i do

if (randomReal(0,1) < CR) or (j = k)) then
wj = mj ;

else

wj = p
(t)
j,i ;

return w;

4. Considered scenarios and quality measures

In this section, the scenarios used and the various quality measurements are
presented and motivated.

4.1. Simulation environment and scenarios

The simulation environment features a virtual environment representing the
search field. In the design of the testbed, an important distinction is between
flight simulator and exploration simulator. A flight simulator focuses on control
logic: it recreates the equations that govern UAV fly, how it reacts to external
factors such as air density, turbulence, wind shear, cloud, precipitation, etc. In
contrast, an exploration simulator focuses on coordination logic, assuming that
external factors are already managed. It represents the exploration at a different
scale, which depends on the spatial and temporal resolution needed to detect
the target, and recreates at that scale obstacles and target distribution. Conse-
quently, in the environment the basic UAV movements and collision avoidance
are simulated for the specific purpose of exploration.

Fig. 7 shows a simplified representation of the environment with the available
elements. For a better granularity and without loss of generality, the search
problem is formulated by discretizing the environment into a lattice of cells. In
the environment, a single UAV, or drone, is represented by a disc with an inner
arrowhead. An obstacle or a target usually covers many cells. In figure, each
obstacle-cell is black, whereas each targeted cell is denoted by ”x”. Finally,
a pheromone mark is represented as a cluster of grey cells. The grey level
represents the pheromone intensity.

Obstacle and target cells are static. Every tick, the environment changes
its current state to the next state, according to the metaheuristics aggregated
rules: (i) the grey level of a pheromone cell is dynamic, and it is updated fol-
lowing the evaporation rule; (ii) an attractive or repulsive pheromone mark
is released by a drone according to the target detection rules; (iii) the drone
position and direction is dynamic and set according to the stigmergy, flocking
and collision avoidance rules. The environment and the coordination logic are
implemented on NetLogo, a leading simulation platform for swarm intelligence
(Netlogo, 2017). For a given type of mission, all rules are parametrically op-
timized by the DE adaptation subsystem developed on Matlab, a numerical
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Figure 7: Environment and its elements: drones (circles), target (cells denoted by x),
pheromone (grey cell), and obstacle (black cells).

optimization framework (Mathworks, 2018). The source code of the integrated
system, together with the scenarios, has been developed in the framework of
an institutionally funded research project, and publicly released on the Github
platform (Cimino et al., 2018).

For each simulated scenario, one patch corresponds to a squared area of
1 meters length in the corresponding real-world scenario. Fig. 8 shows the
considered scenarios.

Three of the scenarios are synthetic: Field : an open field with some clus-
tered targeted cells; Forest : a forest in search and rescue operation; Urban: a
urban environment with the gas leakage. Other three real-world scenarios are
derived from publicly available data set: Dump, map of illegal dumps in Patern,
Sicily (Italy); Rural Mine and Urban Mine, map of unexploded land-mines near
Sarajevo, Bosnia-Herzegovina. Each scenario is explored by 80 UAVs, which are
initially placed at the corners of the map. The characteristics of each scenario
are detailed in Table 2.
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Figure 8: Scenarios: (a) Dump. (b) Field. (c) Forest. (d) Rural Mine. (e) Urban. (f) Urban
Mine.

Table 2: Scenarios characteristics.
Scenario Source Obstacles Buildings Targets
Dump (Trashout, 2018) 140 19 42
Field Synthetic 0 0 50
Forest Synthetic 400 0 20
Rural Mine (See-demining, 2018) 281 3 28
Urban Synthetic 0 7 112
Urban Mine (See-demining, 2018) 59 28 40

Each temporal tick of the simulation has been set to represent one second
in the real world search tasks. The simulator takes into account UAVs cruise
speed, acceleration, angular velocity, battery duration, UAV size, and sensing.
These characteristics have been set considering the technical specifications of the
UAV possibly used in the scenario. Specifically, for the scenarios Dump, Field
and Forest, the UAV used is DJI Inspire 2 with Zenmuse X5S video camera
(Cruz et al., 2016), DJI2+X5S vc for short. For the scenarios Rural Mine,
Urban and Urban Mine, the UAV is equipped to detect gas and landmines
(Gade and Moeslund, 2014) such as the DJI Inspire 1 with Zenmuse XT thermal
camera (Chiaraviglio et al., 2016), DJI1+XT tc for short. Table 3 summarizes
all structural parameters.

Let us consider the UAV camera pointing downwards. It is possible to
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Table 3: Structural parameters of the UAV models.

Parameter Name Measure DJI2+X5S vc DJI1+XT tc
Max Speed m/s 26 22
Cruising speed m/s 3 3
Max Acceleration m/s2 4 4
Max Angular velocity degree/s 150 150
Endurance time s 1620 1080
UAV size m 0.6 0.6
Sensing radius m 2 4
ObstacleVision m 3 3
ObstacleVisionAngle degree 15 15

calculate the radius of a circular sensing area (Sensing Radius) considering a
UAV flight altitude of 3 meters, to navigate under the canopy or in a cluttered
environment (Israel, 2011). A UAV cruising speed no higher than 3 m/s is
assumed to ensure a good target recognition performance (Rodriguez et al.,
2014).

Among the DE variants available in the literature, the popular one called
DE/rand/1/bin has been adopted (Das and Suganthan, 2011), according to
a naming convention known as DE/x/y/z. In this convention, DE stands for
differential evolution, x the base vector to be perturbed, y is the number of
difference vectors considered for perturbation of x, and z the type of crossover
being used. Thus, the used variant is characterized by a perturbation with
randomly (rand) selected members, only one (1) weighted difference vector, and
a binomial (bin) crossover used in conjunction. Among the available variants,
the DE/rand/1/bin provides diversity, promoting the exploration of the search
space (Das et al., 2016).

The cross-over probability and differential weight, have been set up to 0.5
and 0.7, respectively. Finally, the MarkIntensity is set to 1, since any stigmergic
behavior can be managed directly by modifying the evaporationRate.

4.2. Quality measurements

In the literature, it is well-known that to provide a general purpose quality
measure of the swarm properties is a challenging task (Birdsey et al., 2017).
However, the designer can identify the most convenient properties for each spe-
cific application, and evaluate how much the swarm meets them. For this rea-
son, we propose a set of quality measures to investigate the performance and
the properties of the proposed approach:

(i) Effectiveness: since battery duration is a critical feature of current UAVs,
a measure of the mission effectiveness is the average completion time, i.e.
the average time to find the 95% of the targets.

(ii) Efficiency : the efficient swarm carries out a quick survey of the scenario
(exploration) and an in-depth search of areas characterized by targeted
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cells (exploitation). The trade-off between exploration and exploitation
is the target search efficiency. Formally, let v(x,y) be the number of visits
that the cell (x, y) of the environment has received during the mission, and
dt(x,y) the distance of (x, y) from the closest target. Thus, we expect that
for an efficient search v(x,y) is large/small for cells that are close to/far
from a target. In other terms, the average ratio between v(x,y) and dt(x,y)
is high:

SearchEff iciency =
1

n
·

√
n∑

x=1

√
n∑

y=1

v(x,y)

dt(x,y)
(2)

(iii) Scalability : By increasing the number of UAVs the search time is expected
to be lower, due to the additional resources. However, the search time can
be negatively affected by the number of path deviations caused by collision
avoidance between many UAVs. The average search time over repeated
trials, calculated for increasing numbers of UAVs, provides a scalability
measure.

(iv) Adaptive cooperation: on average it is expected that: (a) stigmergy at-
tracts mainly flock mates, i.e., the average flock size and the pheromone
size should be similar; (b) a scenario with isolated/aggregated targeted
cells determines small/large flocks; (c) obstacles determine flock fragmen-
tation. To measure such effects, the following measures should be com-
pared: (i) the (average) width of flocks, i.e. the (average) maximum dis-
tance between two flock mates; (ii) the average number of isolated UAVs,
i.e. UAVs not belonging to any flock; (iii) the average number of non-flock
mates attracted by a pheromone deposit (flock dynamism). Such measures
are based on a procedure able to dynamically identify the flock composi-
tion. For this purpose, we adopt a well-known density-based clustering
algorithm, DBSCAN (Loh and Park, 2014). Fig. 9 shows the DBSCAN
logic: an agent p is a coreagent if at least minPts agents are within dis-
tance ε of it. Such agents are said to be directly reachable from p. An
agent q is reachable from p if there is a path p1, ..., pn with p1 = p and
pn = q, where each pi+1 is directly reachable from pi and all the agents on
the path are core agents. If p is a core agent, then it forms a flock together
with all agents that are reachable from it.

By exploiting the maximum distance of flockmate’s interaction (i.e. Co-
hereRadius) as ε we are able to generate clusters that correspond to the
arrangement of the UAVs in the flocks. Specifically, a group of directly
reachable UAVs are considered a flock, while the ones classified as noise
are considered single UAVs (i.e. not belonging to any flock).
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Figure 9: Representation of the density-based flock composition procedure: Core agents (C),
Directly Reachable Agents (D), and isolated agents (N).

5. Experimental results

This section assesses and discusses the properties of the proposed algorithms
for each scenario, by using the quality measures presented in the former section.
For each measure, we present the 95% Confidence Interval (CI) over 5 repeated
trials. The best results are highlighted in bold style.

Table 4 shows the mission duration for different computational sensing ra-
diuses (abbreviated as Sens.Radius in the tables), assuming the computational
actuation, i.e., remote sensing and remote pheromone release. Here, the en-
hancement provided by computational sensing and actuation is apparent. Ta-
ble 5 clearly shows the same experiment assuming the biological actuation, i.e.,
remote sensing and local pheromone release. Comparing Table 4 and Table 5
it is apparent that the complete computational sensing and actuation sensibly
improves performance.

Table 4: Mission duration with computational sensing and actuation.

Scenario Sens.Radius 2 Sens.Radius 6 Sens.Radius 15
Dump 363.2 ± 102.6 238.4 ± 115.9 108.6 ± 42.8
Field 115.4 ± 45.7 52.8 ± 7.5 35.4 ± 1.41
Forest 334.8 ± 73.3 181.2 ± 88.0 123.2 ± 25.04
Rural Mine 195.8 ± 49.6 111.8 ± 68.5 38.6 ± 2.42
Urban 801.6 ± 310.7 727.8 ± 511.8 286.2 ± 179.1
Urban Mine 303 ± 85.7 160 ± 43.89 100.2 ± 23.46

Table 5: Mission duration with computational sensing.

Scenario Sens.Radius 2 Sens.Radius 6 Sens.Radius 15
Dump 440.6 ± 192.58 234.2 ± 129.8 245.2 ± 91.4
Field 139.8 ± 66.4 61.2 ± 15.9 49.2 ± 11.59
Forest 372.4 ± 66.2 246.4 ± 73.2 186.6 ± 65.2
Rural Mine 193 ± 33.8 94.8 ± 23.28 40.6 ± 1.11
Urban 1070.8 ± 393.2 722.6 ± 360.0 942 ± 695.8
Urban Mine 363.8 ± 134.5 195.4 ± 35.2 129.4 ± 37.31

Based on these results, the computational behavior is compared with the
biological behavior based only on adaptive Stigmergy and Flocking, called S+F*
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presented in (Cimino et al., 2016). It is worth noting that the S+F* algorithm
supports a basic obstacle avoidance that does not detect drones as obstacles.
Thus, UAVs overlapping are possible. To have comparable results, the same
UAV parameters reported in (Cimino et al., 2016) have been used. The results
in Tab. 6, clearly show that the computational approach outperforms the S+F*
approach, although the latter is not constrained by UAV avoidance. Indeed, in
the Urban scenario, which is characterized by highly dense targeted cells, the
S+F* approach outperforms the computational approach. However, it is worth
noting that the number of UAV overlapping during the execution of the S+F*
approach on this scenario is very high. Thus, the related result is not realistic
since it does not consider the real-world constraints by providing an excess of
freedom to UAV flight.

Table 6: Mission duration with computational approach and S+F* approach.

Scenario S+F* Computational Approach
Dump 927 ± 71 919.9 ± 180.9
Field 500 ± 55 292 ± 41.9
Forest 515 ± 65 511.3 ± 38.9
Rural Mine 947 ± 57 501 ± 95.3
Urban 644 ± 51 930.4 ± 114.1
Urban Mine 1109 ± 67 902.6 ± 133.2

Table 7 and Table 8 show the mission duration and the search efficiency when
considering the adaptation of the evolution metaheuristics. Here, the human
adaptation is provided by means of heuristics based on simple statistics: (i)
MaxRandomTurn and FlockAngle are set to 120 and 60 degrees, respectively; (ii)
to avoid overlapping the UAVs fields of view, SeparationRadius is set to 2 cells,
whereas AlignRadius and CohereRadius are set to 4 and 8 cells, respectively; (iii)
the flocking parameters, SeparationRadius, AlignRadius and CohereRadius, have
been set accordingly to 10, 15 and 20 cells; (iv) MarkTopRadius has been set to
6 cells, since it must be greater than ObstacleVision to avoid UAV overcrowding;
(v) MarkBottomRadius has been set to 8 cells, since this is the average distance
between targeted cells in the scenarios; (vi) OlfactoryHabituationTime is set to
3 ticks to allow the UAV to cover a distance of markBottomRadius which allows
to go far from its pheromone.

Table 7: Mission duration considering the adaptation process performed by DE.

Scenario Random Walk Human Adaptation DE Adaptation
Dump 701.8 ± 87.8 624.4 ± 382.7 419.4 ± 157.0
Field 236.6 ± 14.2 198.6 ± 43.3 119.2 ± 16.8
Forest 532.2 ± 130.1 602.2 ± 171.1 318.2 ± 26.4
Rural Mine 206.0 ± 25.4 200 ± 31.4 110.4 ± 58.9
Urban 1760.2 ± 398.6 3056.2 ± 1919.8 801.6 ± 310.7
Urban Mine 217.2 ± 56.7 200.6 ± 17.7 198.2 ± 35.2
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Table 8: Search Efficiency considering the adaptation process performed by DE.

Scenario Random Walk Human Adaptation DE Adaptation
Dump 0.0838 ± 0.004 0.0737 ± 0.004 0.0652 ± 0.002
Field 0.0680 ± 0.057 0.0194 ± 0.001 0.0156 ± 0.001
Forest 0.0229 ± 0.002 0.0247 ± 0.002 0.0138 ± 0.001
Rural Mine 0.0274 ± 0.001 0.0269 ± 0.002 0.0264 ± 0.001
Urban 0.5294 ± 0.175 0.6630 ± 0.169 0.1937 ± 0.051
Urban Mine 0.0270 ± 0.002 0.0262 ± 0.002 0.0259 ± 0.001

The results obtained with the DE adaptation shows a good improvement of
performances in all scenarios, with respect to the other approaches. It is worth
noting that in many scenarios the Human Adaptation does not outperforms
the Random Walk. This result shows the structural importance of the DE
optimization.

The better search efficiency of the DE adaptation is also confirmed by Fig.
10, where the distribution of number of cells with a given number of visits is
shown. Here, an efficient search produces narrower and more-to-the-left distri-
butions.

To measure the internal UAV organization caused by the DE adaptation,
Table 9 and Table 10 shows the adaptive cooperation measures with Human
and DE adaptation, respectively. As a first result, in the DE adaptation, each
scenario is characterized by a lower number of isolated UAV with respect to the
Human adaptation. This corresponds to a better swarm formation.

Table 9: Adaptive cooperation measures with human adaptation.

Scenario Flock Size Isolated UAVs Flock Dynamism
Dump 28.463 ± 0.215 47.539 ± 0.347 0.970 ± 0.182
Field 24.473 ± 0.293 47.084 ± 1.119 0.983 ± 0.193
Forest 25.788 ± 0.198 51.196 ± 0.395 1.396 ± 0.280
Rural Mine 25.155 ± 0.343 47.830 ± 0.806 1.437 ± 0.231
Urban 25.899 ± 0.109 50.593 ± 0.129 1.333 ± 0.178
Urban Mine 29.326 ± 0.451 42.098 ± 0.757 1.000 ± 0.179

Table 10: Adaptive cooperation measures with DE adaptation.

Scenario Flock Size Isolated UAVs Flock Dynamism
Dump 34.334 ± 0.350 5.104 ± 0.119 0.190 ± 0.070
Field 9.213 ± 0.365 35.721 ± 1.236 3.033 ± 0.367
Forest 24.901 ± 0.261 11.114 ± 0.214 0.842 ± 0.247
Rural Mine 16.816 ± 0.361 17.922 ± 0.498 0.148 ± 0.067
Urban 9.875 ± 0.076 29.726 ± 0.221 2.041 ± 0.234
Urban Mine 29.964 ± 0.488 7.910 ± 0.229 0.858 ± 0.174
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Figure 10: Search efficiency: number of cells against number of visits, with Random Walk
(dotted line), Human Adaptation (dashed line), and DE adaptation (bold line).

On the other hand, the DE adaptation determines flock configurations that
are peculiar to the scenario structure. For example, Dump, Forest and Urban
Mine scenarios are characterized by numerous and small obstacles, which tend
to crumble dense and rigid flocks. For this purpose, a good strategy is to create
large and sparse flocks, which are more resilient to small obstacles getting across.
This also results in a lower number of isolated UAVs shown in Table 10.

Figure 11 shows the scalability of the proposed approach, considering the
confidence intervals of mission duration against the number of drones. Overall
it shows that for each scenario, to increment the number of drones produces
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a different degree of improvements. It is worth noting that for some scenario
characterized by dense targeted cells or dense obstacles such as Urban, Field,
and Rural Mine, some nonlinear phenomenon can occur due to the complex
obstacle avoidance situations.

Figure 11: Mission duration with the computational approach: confidence intervals against
UAVs numbers.

The runtime of the DE depends linearly on the population size (let us say,
P ) and on the maximum number of generations (G). In the worst case scenario,
the simulated search mission is repeated G · P times. The runtime of each
simulated search mission depends on the complexity of the scenario (e.g. size,
number of targets, the arrangement of the obstacles) and on the effectiveness
of the coordination mechanism. Such characteristics are difficult to formalize,
however, we can provide an order of magnitude of the runtime by measuring
a confidence interval for each scenario. Table 11 shows the runtime values in
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hours, calculated for each scenario, as the 95% confidence interval over 5 runs.
The maximum number of generations G has been set to 15, and the population
P has been set to 30. The following hardware/software platform was used: CPU
Intel Core i7-6700HQ at 2.60-3.50 GHz, 6M Cache, 16 GB DDR3L 1600MHz
RAM, Windows 10 OS. Considering that the code is not engineered for parallel
computing, and then the evaluation of each individual is sequential, the resulting
adaptation is relatively fast.

Table 11: Adaptation time (hours).

Dump Field Forest RuralMine Urban UrbanMine
10.1± 1.3 4.9± 0.3 17.4± 0.9 4.5± 0.3 18.2± 1.0 7.3± 0.5

6. Conclusion and future work

In this work, we have enhanced basic biologically inspired metaheuristics for
modeling and optimizing UAVs coordination in target search, taking into ac-
count technological and computational advances. A novel coordination logic is
proposed, by designing stigmergy, flocking, and sensing/actuation metaheuris-
tics. The combined metaheuristics are logically integrated and adapted to spe-
cific missions via a differential evolution optimization. The system has been sim-
ulated on synthetic and real-world scenarios, by considering UAV commercial
models. Experimental results show that (i) the computational advances sensi-
bly improve the performance and the realism of the biologically metaheuristics;
(ii) the differential evolution optimization provides significant and structural
improvements to the coordination logic; (iii) the quality of the resulting coop-
eration is better in terms of swarm formation, search efficiency, strategy and
scalability.

In the current system, the constrained optimization is modelled by setting
hard constraints, i.e., intervals for each parameter; nevertheless, it might be
interesting, for example, to penalize some ranges of parameters values in the
objective function. The so called soft constraints allow to distinguish the various
solutions in terms of technological cost, to trade-off between efficiency and cost.
On the other hand, in this research a strong emphasis on reducing the flight
time has been given in the optimization process. This emphasis creates efficient
swarms, but, for example, given an industrial plant, the user might be interested
in a simpler coordination strategy working sub optimally but useful in similar
layouts beyond the specific plant. Thus, in this case, the system should be
configurable so as to reduce the precision and increase the simplicity. For these
reasons, future work will focus on the design of an objective function including
soft constraints and exploiting knowledge on the environment during the swarm
optimization.

The robustness to faults and loss of individuals is one of the key properties of
a bio-inspired swarming behavior. In the case of swarms of drones, this should
result in the ability to properly manage some unattended drones unavailability
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or critical system faults. We aim at evaluating the swarms robustness in the
future works by simulating such occurrences.
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