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Abstract: Machine learning (ML) methods need to explain their reasoning to allow professionals to validate and trust
their predictions, and employ those in real-world decision-making processes. To do so, explainable artificial
intelligence (XAI) methods based on feature importance can be employed, even though those can be very
computationally expensive. Moreover, it can be challenging to determine whether an XAI technique might
introduce bias into the explanation (e.g., overestimating or underestimating the feature importance) in the
absence of some reference feature importance measure or even some domain knowledge from which deriving
an expected importance level for each feature. We address both these issues by (i) employing a counterfactual-
based strategy, i.e. deriving a measure of feature importance by checking if some minor changes in one
feature’s values significantly affect the ML model’s regression outcome, and (ii) employing both synthetic and
real-world industrial data coupled with the expected degree of importance for each feature. Our experimental
results show that the proposed approach (BoCSoRr) is more reliable and way less computationally expensive
than DiCE, a well-known counterfactual-based XAI approach able to provide a measure of feature importance.

1 Introduction and Motivations

Machine learning technology has become ubiquitous,
with unprecedented recognition performances (Alfeo
et al., 2017) and applications spanning across every
domain (Alfeo et al., 2019). However, since ML
approaches can work as a black box, domain ex-
perts cannot easily validate and trust their outcomes
(Alfeo et al., 2022a). This is especially important
in real-world scenarios such as in smart manufac-
turing (Alfeo et al., 2022b). The adoption of AI
technology can improve the manufacturing productiv-
ity only if the AI’s outcomes can be understood and
trusted enough to be integrated into decision-making
processes (İç and Yurdakul, 2021). To address this
challenge, Explainable Artificial Intelligence (XAI)
methodologies can be used to provide some insights
into the reasoning of ML models (Jeyakumar et al.,
2020). Employing XAI techniques in smart manufac-
turing contexts can indeed lead to cost reduction, pre-
diction error minimization, and enhanced debugging
of AI-based systems (Ahmed et al., 2022).
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The explanations provided via post-hoc XAI tech-
niques can be organized according to their scope and
form. An explanation can be local or global. Lo-
cal explanations focuses on the ML’s outcome for a
specific instance. Global explanations offer insights
into the decision process of the ML model as a whole.
Moreover, according to the recent survey (Miller,
2019), the explanations’ form can be organized into
three main groups: (i) Instance-based explanations
link a given instance to prototypes or counterfactual
examples, triggering a similarity-based reasoning for
end-users like domain experts. Given one data in-
stance, its counterfactual is a similar instance that cor-
responds to a different ML model’s outcome (Delaney
et al., 2021); (ii) Attribution-based explanations un-
fold the AI model’s decision process by evaluating
the contribution of each input feature to the predic-
tion. Attribution-based approaches can provide both
local and global explanations (Afchar et al., 2021);
and (iii) Rule-based explanations attempt to approx-
imate the decision process of the algorithm by asso-
ciating labels with input feature thresholds (van der
Waa et al., 2021). Choosing a suitable explanation
form is an application-dependent design choice. In
the context of smart manufacturing, the end-users are
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typically non-experts in AI. So, highly comprehen-
sible explanations should be prioritized. In this re-
gard, attribution-based (e.g., feature importance) and
instance-based (e.g., counterfactual) explanations can
be employed (Markus et al., 2021). Specifically,
feature importance approaches are widely used due
to the availability of model-agnostic techniques that
generate feature rankings (Afchar et al., 2021). The
widespread use of these approaches has exposed their
limitations, including their great computational com-
plexity (Kumar et al., 2020). To address this limita-
tion, an increasing body of research is exploring inno-
vative strategies that combine feature importance and
counterfactual explanations (Alfeo et al., 2023b).

Furthermore, it’s well-known that the assumptions
behind the reliability of feature importance measures
may not hold in real-world scenarios. For instance,
when the features are characterized by significant cor-
relation and co-dependence, some measures of fea-
ture importance may become unreliable (Marcı́lio and
Eler, 2020). In these cases, it’s challenging to de-
termine whether the XAI method is overestimating
or underestimating the importance of one feature. A
proper validation of a feature importance measure
would need some reference importance measure or
domain knowledge that provides an expected impor-
tance level for each feature. Unfortunately, this need
is often neglected due to the high costs and the dif-
ficulties associated with obtaining an a-priori quan-
titative assessment of feature informativeness (Arras
et al., 2022; Ali et al., 2023).

In this paper, we tackle this issue by leverag-
ing both synthetic and real-world datasets that in-
clude a degree of expected importance for each fea-
ture. With the synthetic dataset, the expected im-
portance of each feature is imposed by the data gen-
eration procedure (Guidotti, 2021). With the real-
world dataset, we rely on the expertise of man-
ufacturing domain professionals to obtain the ex-
pected feature importance level for each feature (Barr
et al., 2020). We employ these datasets to eval-
uate a novel efficient counterfactual-based feature
importance measure for regression problems (BoC-
SoRr). The proposed method is compared to a well-
established counterfactual-based feature importance
measure from the state-of-the-art.

The structure of the paper is as follows. Section
2 presents the related works. Section 3 details the
method we propose. Section 4 covers the case stud-
ies and the experimental setup. Section 5 discusses
the results obtained, and finally, Section 6 outlines the
conclusions drawn from this study.

2 Related Works

The majority of the research works using XAI ap-
proaches employ feature importance methods (Miller,
2019). Those methods assign importance scores to
each feature based on some criteria, such as by esti-
mating the Shapley value (Sundararajan and Najmi,
2020). In contrast, counterfactual explanations are
minimally different versions of the sample whose pre-
dictions need to be explained, that results in a differ-
ent prediction.

According to (Kommiya Mothilal et al., 2021),
counterfactuals can offer an alternative means for de-
riving feature importance measures since both those
approaches focus on the model’s decision boundary.
Counterfactual approaches aim to find the minimal
change in the data instance that results in the cross-
ing of the model’s decision boundary (Schleich et al.,
2021), whereas some feature importance measures at-
tempt to approximate it (Ribeiro et al., 2016). This
allows employing counterfactual approaches to gen-
erate new and improved procedures to measure the
feature’s importance and vice versa. Indeed, there is
a growing body of research exploring these strategies
(Alfeo et al., 2023b).

For instance, in (Wiratunga et al., 2021), the au-
thors propose an approach for generating counter-
factuals by modifying the most important features,
as measured via Shapley values. Given an instance
to be explained, the authors in (Vlassopoulos et al.,
2020) obtain a local approximation of the model’s de-
cision boundary by generating counterfactuals via a
variational autoencoder. Similarly, in (Laugel et al.,
2018) the authors generate new instances in a hyper-
sphere surrounding the sample to be explained to pro-
vide local decision rules that are consistent with the
model’s decision boundary. However, the high com-
putational cost of this approach makes it non-feasible
for datasets with a high number of features. DiCE
(Mothilal et al., 2020) stands out as a renowned ap-
proach that employs counterfactual explanations to
derive feature importance measures. DiCE generates
a set of counterfactual explanations for a given pre-
diction. By examining how the feature values change
across the counterfactuals, DiCE provides insights
into which features have the most significant influ-
ence on the prediction outcome. In short, the fea-
tures that exhibit the greatest variation in the counter-
factuals are considered more important. Considering
its established reputation and its suitability both for
classification and regression problems (Dwivedi et al.,
2023), we select DiCE as the state-of-the-art bench-
mark for evaluating our proposed feature importance
measure.



3 Design

In this section, the design of the proposed method is
detailed.

We propose the Boundary Crossing Solo Ratio for
Regression problem (BoCSoRr), a global feature im-
portance measure obtained by aggregating local coun-
terfactual explanations. This method is an adaption
for the regression problem of the method presented
in (Alfeo et al., 2023b). The method in (Alfeo et al.,
2023b) is designed for the classification domain and
is based on the concept of counterfactuals, i.e. sam-
ples characterized by minor features change but dif-
ferent classes. We employ this terminology in this
study even if in this case there are no counterfactual
classes. Indeed, since we address a regression prob-
lem the concept of counterfactual class is replaced by
a more broad “significant difference in the model’s
outcome”. Specifically, BoCSoRr evaluates the im-
portance of one feature by considering the frequency
with which a slight change in the value of that specific
feature results in a significant change in the model’s
outcome (see Fig. 1).

Figure 1: Representation of the idea behind BoCSoRr’s fea-
ture relevance. Let’s consider two samples, A and B, that
are close in the input space and distant in the output space.
Sample A′ is generated using sample A and changing the
value of Feature #1 with the one of sample B. Feature #1
can be considered relevant since, as a result of its change
alone, A′ is closer to B than A in the output space.

To find the samples that are close in the input
space (i.e. the feature space) and distant in the output
space (i.e. the regression target), we consider both (i)
the cosine similarity (Abbott, 2014) between all the
samples in the feature space, and (ii) the Euclidean
distance of the labels (i.e. the target quantity of the
regression problem). Via a min-max procedure (Ab-
bott, 2014), we rescale between 0 and 1 both of these
quantities and aggregate those (lines 2-4 of Algorithm
1), to obtain the counterDist, a distance bounded be-
tween 0 and 2. 0 corresponds to samples pair very
far apart in the input space and with minimal dif-

ference in the output space. 2 corresponds to sam-
ple pairs very close in the input (whose values will
therefore be characterized by slight differences) and
with maximum difference in the output space. As in
(Alfeo et al., 2023b), we aim at identifying sample
pairs characterized by a great counterDist. Firstly,
we select the n samples corresponding to the greatest
average counterDist with all the samples (line 5 of Al-
gorithm 1), and then for each i instance among those,
we select the k samples with the greatest counterDist
w.r.t. i (line 7 of Algorithm 1). As introduced at the
beginning of this section, we call those samples coun-
terfactuals. The above-presented two-step search pro-
cedure is preferred to a simpler search for the pairs of
samples characterized by the greatest counterDist to
avoid populating the search result with outliers.

Then, we substitute (one at a time) the features’
value of samples i with one of its counterfactuals. If
this single value change shifts the prediction closer to
the label of the counterfactual, the modified feature is
considered relevant. The regression outcome change
is measures as the absolute value of their Euclidean
distance (lines 10-12 of Algorithm 1).

By taking into account all the samples i and their
counterfactuals, the frequency with which a feature is
considered relevant (line 17, Algorithm 1) is used as a
proxy of the importance of that feature (Vlassopoulos
et al., 2020). Algorithm 1 shows a high-level pseudo-
code of the above-described procedure.

4 Experimental setup

This section presents the experimental setup, the met-
rics used to evaluate the convenience of proposed
method, and the datasets we employed in the exper-
iments.

4.1 Synthetic dataset

To assess the reliability of the feature importance
measure, we build a tabular dataset with predefined
feature importance levels, following a methodology
similar to the ones outlined in (Barr et al., 2020) and
(Alfeo et al., 2023b).

Specifically, we employ the make regression
function from the Python library scikit-learn (Pe-
dregosa et al., 2011). This function generates the
data for a random regression problem. The tar-
get values are obtained as a random linear combi-
nation of the features, to which optional sparsity
and noise can be included (Pedregosa et al., 2011).
The make regression function allows to explicit select
how many samples to generate and how many features



Algorithm 1 Procedure to measure the feature importance (i.e., BoCSoRr).
Requires:
M ⇐ trained machine learning model
M(s)⇐ the prediction of M for instance s
I ⇐ set of all the instances in the data
F ⇐ set of all the features in the data
L ⇐ set of all the labels in the data
n ⇐ number of instances to query
k ⇐ number of counterfactuals per instance to query
Procedure:

1: relevantFeatures ⇐ emptyList()
2: instanceDist ⇐ computePairwiseDistance(I, I,Cosine similarity)
3: labelDist ⇐ computePairwiseDistance(L,L,Euclidean distance)
4: counterDist ⇐ minMax(labelDist)+minMax(instanceDist)
5: instancesToQuery ⇐ samplesWithTopAvgDist(counterDist,n)
6: For each i ∈ instancesToQuery
7: counter f actuals ⇐ samplesWithTopDist(counterDist, i,k)
8: For each c ∈ counter f actuals
9: For each f ∈ F

10: stmp ⇐ changeFeatureValue(i,c, f )
11: if (|M(stmp)−M(i)|> |M(stmp)−M(c)| )
12: relevantFeatures.append( f )
13: End if
14: End For
15: End For
16: End For
17: f eatureImportance ⇐ f requenceByFeature(relevantFeatures)
18: return f eatureImportance

should be informative (or not) in the dataset. Thus, we
build a dataset consisting of 1000 samples, with five
informative features followed by ten non-informative
ones. Also, some additional Gaussian noise is intro-
duced to each non-informative feature. The amount
of noise progressively increases from the 6th feature
to the 15th, such that those are supposed to be less
and less informative. It’s worth noting that since it
is impossible to quantify how the addition of noise
precisely diminishes the informativeness of one fea-
ture, the ground truth feature importance for this syn-
thetic dataset consists of two importance levels, high
(informative features) and low (non-informative fea-
tures). Similar to other studies that generate data with
known feature importance (Yang and Kim, 2019), the
approach used to generate the synthetic dataset allows
for comparison of the feature importance as measured
via different XAI approaches on the same features and
assess if the computed importance metrics is more or
less aligned with the expected feature importance val-
ues.

4.2 Real-world dataset

This study employs a real-world dataset provided by
Koerber Tissue, a company specialized in the produc-
tion of industrial machines for tissue paper manufac-
turing. These machines are aimed at processing big
reels of raw paper by pressing and gluing the paper
layers while embossing a specific motif (e.g. the logo
of the seller) onto the final product. Each machine is
tested using various paper types and production set-
tings, such as the machine speed or embossing pres-
sure (i.e., the features of our analysis). For each pro-
duction setting, multiple measurements are taken on
the final product. These measurements encompass
quality-related measures of the final product, such as
paper resistance and bulkiness, i.e. the target of our
analysis.

Like many real-world datasets, the company’s
data needs to be preprocessed to remove sensitive in-
formation and handle the missing values. To this aim,
all of the columns with more than 66% missing values
are removed. Then, we remove all the data instances
with more than 50% features characterized by miss-
ing values. Finally, all the data instances are clustered



according to the values of the most informative and
sensitive features that do not present missing values.
For each feature, the numerical missing value of one
data instance is replaced with the median of its cluster.
The sensitive features are then removed.

The resulting dataset consists of more than 440
instances and 12 attributes (Table 1), which are: (i)
a unique identifier for each test measurement (ID),
which is not considered an informative feature and
thus it is removed from the analysis; (ii) the per-
centage of elongation of the raw paper (when dry)
in the latitudinal (ELOLA) and longitudinal direction
(ELOLO); (iii) the ratio of the raw paper resistance in
the longitudinal and latitudinal directions (DRYRAT).
(iv) the hardness of the rubber top (TRH) and bot-
tom (BRH) roll used to imprint a motif on the pa-
per, and measured in Shore A; (v) the strength of
the raw paper in the latitudinal (STRLA) and longi-
tudinal direction (STRLO); (vi) the thickness of the
raw paper (THICK); (vii) the weight of the raw paper
(WEIGHT); and (viii) the number of tissue layers in
the final product (LAYERS); (ix) the bulkiness of the
final product (BULK), i.e. the targets of the analysis.

In order to obtain the ground truth for the feature
importance, we gathered both the experts of the tis-
sue production process and the machine data analysts.
The level of expected importance for a feature in the
data results from their agreement on how critical and
informative that feature could be for recognizing the
bulkiness of the final product according to their expe-
rience and domain knowledge. For the purpose of this
analysis, those levels are grouped into two categories,
high and low.

Table 1: Expected feature importance level according to the
domain experts.

Attribute Units Expected Imp.
ID Integer -
ELOLA % LOW
ELOLO % LOW
DRYRAT Real LOW
TRH ShA LOW
BRH ShA LOW
STRLA N/m LOW
STRLO N/m LOW
THICK mm HIGH
WEIGHT gr/m2 HIGH
LAYERS Integer HIGH
BULK Real -

4.3 Performance evaluation

As motivated in Section 2, the proposed method is
compared with an established state-of-the-art method
that derives measures of importance from counterfac-
tuals, i.e. DiCE (Mothilal et al., 2020). All experi-
mental results are provided via 10 repeated trials, the
obtained performances are shown in aggregate form
as mean or confidence interval. Each iteration in-
cludes the re-training of the ML approach and the
measurements of the feature importance. This en-
sures that different measures of feature importance
(e.g. BoCSoRr and DiCE) are actually evaluating the
same trained ML model at each iteration.

As performance measures, we first consider the
computational cost of the proposed method. To do
so we measure the time (in seconds) required to com-
pute the feature’s importance. The smaller the com-
putation time needed to obtain the feature importance
measure, the better. All the experiments are run on
the same Google Colaboratory session, featuring an
Intel Xeon CPU with 2 vCPUs, and 13 GB RAM. To
ensure better comparability, the number of samples
used by DiCE to compute the feature importance is
constrained to those used by BoCSoRr, i.e. k times n.

Then, we consider the method’s fidelity, i.e. if the
feature importance measure correctly represents the
ML model’s decision process (Coroama and Groza,
2022). The fidelity can be measured by comparing
the proposed feature importance measure with a re-
liable model-based reference measure. For instance,
many ML approaches based on decision trees (Ab-
bott, 2014) do provide a built-in measure of fea-
ture importance (i.e. the Gini index (Abbott, 2014))
that can be used as a reference measure when the
ML model under analysis is indeed a decision tree.
Since any feature importance measure provides dif-
ferent importance value ranges, those can be difficult
to compare by simply using a distance measure. How-
ever, feature importance approaches are often used to
derive a rank of the features, and two ranks can easily
be compared using measures like the Spearman rank
correlation coefficient (Zar, 2005).

The Spearman rank correlation coefficient, de-
noted as ρ, is a non-parametric measure of the
strength and direction of the monotonic relationship
between two variables. Spearman’s ρ is calculated
by first transforming the array of data points (i.e. the
value of measured importance for each feature) into
ranks and then computing the Pearson correlation co-
efficient on the ranked data. It ranges from -1 to 1,
where ρ = 1 represents a perfect increasing mono-
tonic relationship, and ρ = −1 represents a perfect
decreasing monotonic relationship.



ρ = 1− 6∑d2
i

n(n2 −1)
(1)

In (1), di represents the difference between the
ranks of feature i, whereas n is the number of features.
We employ Spearman’s ρ between the reference fea-
ture importance measure and the one obtained via the
other feature importance method as a measure of its
fidelity.

Finally, we consider the empirical correctness
of the proposed method, i.e. if there is an agree-
ment between the obtained feature importance mea-
sure and the expected importance of each feature, i.e.
the ground truth (Coroama and Groza, 2022). Such
ground truth can be derived from domain experts’
knowledge (Alfeo et al., 2022b) or available by de-
sign if the data are generated according to some pre-
defined level of importance (Guidotti, 2021). Simi-
larly to the proposal in (Alfeo et al., 2023a), to mea-
sure the agreement between the ranking of the fea-
tures obtained via a feature importance measure and
the ground truth, we group the ranked features accord-
ing to the number of features with a given expected
importance level. Since both the datasets used in this
study feature two levels of expected importance, we
can simply consider the highest features in the rank
as important and the rest as non-important. For in-
stance, if there are 5 important features according to
the ground truth, the top 5 features according to the
computed feature importance measure are labeled as
“important”, whereas the remaining features are con-
sidered “non-important”. Then, as the measure of em-
pirical correctness, we consider the percentage of the
features that are correctly assigned to the ground truth
importance level. This measure is bounded between
0 (worst case) and 1 (best case). As suggested in
(Coroama and Groza, 2022), and we call it empirical
correctness since it is based on a knowledge-driven
a-priori assumption on the informativeness of each
feature for the regression problem.

Given the different metrics considered in our anal-
ysis, we performed a manual exploration of BoC-
SoRr’s hyperparameter space (i.e. k and n), aiming
to strike a good trade-off among those. After exten-
sive experimentation within the range of 3 to 20, the
best trade-off is identified as k=19 and n=15 for the
real data, and k=15 and n=10 for the synthetic data.

5 Results and discussion

Being a model-agnostic feature importance measure,
BoCSoRr can be used with any ML method that han-
dles tabular data. In this research, our primary objec-

tive is to explain the ML regression model rather than
striving for optimal regression performance. As such,
for all of our experimentation, we employed a shal-
low ML approach, i.e. the Decision Tree regressor,
parametrized using the default values provided by the
scikit-learn library (Pedregosa et al., 2011).

The Decision Tree regressor (Abbott, 2014) is an
ML method used to predict a numerical value. This
model creates a tree-like structure of rules by dividing
the data into decision nodes. These splits are based
on the values of one feature, and the “purity” (mea-
sured via the Gini Index) of the data groups resulting
from the split. During tree construction, the Decision
Tree keeps track of how variables influence the re-
duction of the Gini Index. Variables that significantly
contribute to reducing the Gini Index are considered
more important. Once trained, the Decision Tree pro-
vides a built-in measure of feature importance com-
puted by summing the Gini Index reductions for a
variable across all the splits it’s involved in. This
measure will be used to evaluate the fidelity of the
proposed method.

We computed the feature importance for the syn-
thetic data by employing both DiCE and BoCSoRr.
In Fig. 2, the solid line represents the average feature
importance measure obtained via BoCSoRr, whereas
the dashed line represents the average feature impor-
tance measure provided by DiCE. Their values are
rescaled via a min-max procedure to better compare
them visually. The background color indicates the
expected feature importance, with the initial five fea-
tures being deemed significant (indicated by a green
background), and subsequent non-informative fea-
tures, resulting in less and less expected importance
due to the introduction of noise (transitioning from
green to red). The resulting average feature impor-
tance measures provided by BoCSoRr exhibit a bet-
ter consistency with the expected feature importance
since it does result in lower importance for the non-
informative features (i.e. from the 6th to the 15th)
and an overall greater measured importance with the
informative ones. On the other hand, DiCE seems to
provide very small importance to the 5th feature (an
informative one) and greater importance to the 11th
feature (a non-informative one).

We computed the performance measures pre-
sented in Section 4.3 with the synthetic data. As
evident from the results in Table 2, compared to
DiCE, BoCSoRr offers (i) significantly less compu-
tation time, i.e. less than half the one required for
DiCE to compute the feature importance; (ii) greater
fidelity, which means a greater agreement between
the feature importance ranks obtained via the built-
in feature importance measure of Decision Tree and



Figure 2: Feature importance obtained via DiCE and BoC-
SoRr with the synthetic dataset. Their values are rescaled
via a min-max procedure to better compare them visually.
The dashed line represent the separation between informa-
tive and non-informative features.

Table 2: 95% confidence interval of the performance evalu-
ation measures obtained with ten repeated trials on the syn-
thetic dataset. All the rank correlation (i.e. the measure of
fidelity) values corresponds to p-values lower than 0.05.

Measure BoCSoRr DiCE
Fidelity [ρ] 0.79 ± 0.03 0.72 ± 0.08
Empirical c. [%] 0.95 ± 0.05 0.88 ± 0.03
Comput. time [s] 31.45 ± 3.48 64.33 ± 3.54

the ranks obtained via BoCSoRr, thus BoCSoRr bet-
ter captures the decision process of the decision tree;
and (iii) greater empirical correctness, which means
a greater agreement between the feature importance
ranks obtained via BoCSoRr and the expected feature
importance as per the synthetic data construction pro-
cedure. The last result was anticipated by the qualita-
tive evaluation provided with the results in Fig. 2.

With the real-world industrial dataset, the deci-
sion tree results in good regression performance, with
an average Mean Square Error of 0.0065 while pre-
dicting the value of the paper’s bulkiness. Then, we
explain the trained decision tree with BoCSoRr and
DiCE. By considering the performance measures de-
scribed in Section 4.3, BoCSoRr provides better re-
sults than those obtained by DiCE, with each consid-
ered performance measure (see Table 3).

Compared to the results obtained with the syn-
thetic data, between BoCSoRr and DiCE there is a
greater difference in terms of fidelity and a smaller
difference in terms of computation time. Since BoC-
SoRr and DiCE use the same number of samples to

Table 3: 95% confidence interval of the performance evalu-
ation measures obtained with ten repeated trials on the real-
world dataset. All the rank correlation (i.e. the measure of
fidelity) values corresponds to p-values lower than 0.05.

Measure BoCSoRr DiCE
Fidelity [ρ] 0.73 ± 0.06 0.23 ± 0.18
Empirical c. [%] 0.66 ± 0.07 0.58 ± 0.08
Comput. time [s] 20.97 ± 0.87 39.10 ± 0.75

compute feature importance (see Section 4.3), the lat-
ter result can be interpreted as better scalability of
BoCSoRr with respect to the number of features. In
fact, as the number of features increases, BoCSoRr
consistently outperforms DiCE in terms of percent-
age improvement. On the other hand, the difference
in terms of fidelity requires further investigation. It
is well-known from the literature that the correla-
tion between features may affect the measurement
of their importance for the ML model (Marcı́lio and
Eler, 2020). Thus, any misalignment between feature
importances should also be analyzed considering the
correlation between the features. To analyze how the
considered feature importance measures are affected
by the features’ correlation, we computed the maxi-
mum correlation (MC) between each feature and any
other feature in the dataset. Then, we select the five
features characterized by the most similar importance
value according to BoCSoRr and DiCE. To ensure
the comparability the importance values measured by
BoCSoRr and DiCE are rescaled via a min-max pro-
cedure. We repeat this procedure to identify the five
features characterized by the most dissimilar impor-
tance values according to BoCSoRr and DiCE. The
violin plots in Fig. 3 illustrate the MC values obtained
for these two groups of features.

Figure 3: The MC of the 5 features characterized by the
most similar and dissimilar importance scores provided by
BoCSoRr and DiCE, with the real-world industrial dataset.
The dotted line represent the average MC with all the fea-
tures.

According to the results shown in Fig. 3, the group
of features characterized by the greater importance
difference as measured via DiCE and BoCSoRr is
characterized by a greater MC. Overall, their average
MC is even greater than the average MC among all the
features of the whole dataset (the dashed line in Fig.
3). Vice versa for the features of the other group. In
short, BoCSoRr is more reliable than DiCE, and they
mostly disagree on the features that are more corre-
lated with any other feature of the dataset. This may



suggest that the difference both in terms of empiri-
cal correctness and fidelity can be motivated by the
greater robustness of BoCSoRr to feature correlation.

6 Conclusion

We have introduced a novel model-agnostic measure
of global feature importance for regression problems,
namely BoCSoRr. BoCSoRr broadly utilizes the con-
cept of counterfactuals and applies it to regression
problems, to determine which features, if modified,
are most likely to result in a significant change in the
ML model’s outcome. In our experiments, we em-
ployed both synthetic and real-world data and com-
pared BoCSoRr performances against the ones ob-
tained via DiCE, a well-known counterfactual ap-
proach able to derive a feature importance measure.
With both datasets, BoCSoRr is more reliable and
less computationally expensive than DiCE. The relia-
bility of BoCSoRr is tested both in terms of fidelity,
i.e. agreement with the model build-in feature impor-
tance measure, and by employing some human-driven
domain knowledge about the expected importance of
each feature for the regression problem.

As future research directions, BoCSoRr will be
employed with other ML regression approaches with
a built-in feature importance measure. This would
provide a better understanding of whether the prop-
erties proven in this study are consistent despite the
ML model used.
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