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ABSTRACT
Electroencephalography (EEG)-based emotion recognition is gaining increasing importance due to its
potential applications in various scientific fields, ranging from psychophysiology to neuromarketing. A
number of approaches have been proposed that use machine learning (ML) technology to achieve high
recognition performance, which relies on engineering features from brain activity dynamics. Since ML
performance can be improved by utilizing 2D feature representation that exploits the spatial relationships
among the features, here we propose a novel input representation that involves re-arranging EEG features as
an image that reflects the top view of the subject’s scalp. This approach enables emotion recognition through
image-based ML methods such as pre-trained deep neural networks or "trained-from-scratch" convolutional
neural networks. We have employed both of these techniques in our study to demonstrate the effectiveness of
our proposed input representation. We also compare the recognition performance of these methods against
state-of-the-art tabular data analysis approaches, which do not utilize the spatial relationships between the
sensors. We test our proposed approach using two publicly available benchmark datasets for EEG-based
emotion recognition tasks, namely DEAP and MAHNOB-HCI. Our results show that the "trained-from-
scratch" convolutional neural network outperforms the best approaches in the literature, achieving 97.8%
and 98.3% accuracy in valence and arousal classification on MAHNOB-HCI, and 91% and 90.4% on DEAP,
respectively.

INDEX TERMS Convolutional Neural Networks, Electroencephalography, Emotion recognition, Spatial
information representation

I. INTRODUCTION

AFFECTIVE computing is a broad research field that
investigates emotional and mental states through the

analysis of physiological signals or other sources of infor-
mation, such as videos, images, or sounds.

In this field, emotion recognition is becoming increasingly
important due to the many applications in which it is in-

volved. The exploitation of physiological data for emotion
recognition may be motivated by several factors, such as their
psycho-physiological correlates, or the ability of intelligent
systems to analyze them and potentially identify patterns
associated with affective disorders (e.g., anxiety and depres-
sion). Additionally, there has been an increasing number
of easy-to-use, non-invasive, portable devices capable of
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gathering robust physiological data [1], [2]. Emotions can
be identified as discrete regions in a multidimensional space,
whose main dimensions according to the circumplex model
of affect [3], [4] are valence (positive to negative feelings)
and arousal (sleepy to excited), or as a series of discrete basic
emotions such as the Ekman model [5], that identifies six
basic emotions, i.e. anger, disgust, fear, happiness, sadness
and surprise, or the Plutchik’s model [6], that proposed a
wheel of eight emotions: joy, trust, fear, surprise, sadness,
disgust, anger and anticipation; all these categorical emotions
can combined to define more detailed perception.

In the context of emotion recognition tasks based on non-
invasive physiological data, electroencephalography (EEG)
is one of the most commonly used signals [7] due to its
good compromise between temporal and spatial resolution
[8]. It is also widely used thanks to the number of non-
invasive, low-cost, and easy-to-operate wearable devices on
the market [9]. EEG is usually sampled by placing a group of
sensors or channels on the patient’s scalp, arranged according
to a standard scheme, such as the international standard
pattern 10-20 [10]. The EEG signals are usually analyzed
in the frequency and time domains, and EEG channels are
mostly handled as independent time series, meaning that the
spatial relationship among EEG sensor dynamics is mostly
neglected [11].

It has been reported that the majority of studies (89.4%)
performing EEG-driven emotion recognition extract features
from the frequency domain and employ methods such as
Short-time Fourier Transform or Discrete Fourier Trans-
form (25.4%), Power Spectral Density (PSD) (22.2%), and
Wavelet Transform (19.1%) [12]. Once computed, these
data are generally converted into tabular shape, where a
number of location-specific features are extracted from each
classification instance. Eventually, the tabular features are
processed by some machine learning (ML) model capable
of recognizing the corresponding class label associated with
emotional correlates. Most of the emotion recognition tasks
presented in the literature rely on ML algorithms such as
Support Vector Machines (SVM) (59%), K-Nearest Neigh-
bors (KNN) (14%), Multilayer Perceptron Networks (MLP)
(6.63%), linear discriminant analysis (LDA) (6.3%), and
quadratic discriminant analysis (QDA) (3.2%) [12]. The op-
erations of model training and testing are performed either
separately, using data from a single subject (i.e., a subject-
dependent framework), or using data from multiple subjects
(i.e., a subject-independent framework) [12].

Recent studies have shown that the spatial information
integrated into the EEG arrangements can be used to improve
EEG classification performances [13]. To include the spatial
domain information, the features obtained by processing each
EEG channel can be considered as spatial points displayed
in a tri- or bi- dimensional space, considering the sensors’
placement [12], and then processed through spatial filters
[13] or image processing tools [14].

As a consequence, arranging EEG features as an image
would allow employing specific image-based ML approaches

like Convolutional Neural Networks (CNNs) [14]. CNN is
considered one of the most widely used ML techniques,
especially in image-related applications; CNNs can learn
new representations from images and have shown substantial
performance improvement in various ML applications [15].
Usually, several neurons’ layers of different natures are inter-
mixed in a CNN architecture, with the last one performing
the actual classification task.

The arrangement of CNN layers plays a fundamental role
in the designing and training of new architectures, thus al-
lowing increasing algorithmic performance. With the correct
architecture, CNNs have demonstrated the capability to han-
dle and generalize big data exploiting high-computational re-
sources. Indeed, there are several publicly available state-of-
the-art CNN-based architectures trained with huge datasets
[16], such as the well-known AlexNet [17], DenseNet [18],
or MobileNetV2 [19]. These pre-trained architectures can
be easily imported into a new system, quickly fine-tuned
if necessary, and then used in a new task with the benefit
of previously learned knowledge. This is very useful for
all the applications, like the ones based on physiological
data, in which it is difficult to get a sufficient amount of
data to correctly train the CNN [15]. The effectiveness of
these models in an affective computing scenario for EEG-
based emotion classification is also suggested by the fact that
some of the most accurate architectures proposed in recent
years used an image rearrangement of the EEG to allow the
usage of CNN, without considering the spatial relations of
the electrodes [20], [21].

To summarize, EEG-based emotion recognition is an ex-
tremely important task, which has mainly been tackled using
standard signal processing techniques in the time and fre-
quency domains; spatial information has been overlooked so
far, despite its known importance in ML-based applications.

To this extent, the main contribution of this study is a
novel approach to exploit the spatial relationship among EEG
sensors through image-based machine learning algorithms.
Specifically, the proposed method involves a rearrangement
of EEG features into images, which are subsequently fed
to pre-trained neural networks and a novel CNN to extract
features and classify emotions. To evaluate the proposed ap-
proach, we compared the performance of several pre-trained
neural networks on image classification tasks in emotion
recognition with different state-of-the-art algorithms for the
classification of EEG tabular features. Furthermore, a novel
ad-hoc CNN is here proposed, trained from scratch to process
the new input. The experimental results show that the pro-
posed approach outperforms the state-of-the-art algorithms
in subject-dependent valence- and arousal- emotion classifi-
cation.

The paper is organized as follows: In section II, we detail
the experimental setup, dataset description, feature extrac-
tion, and the rearrangement of EEG features into images.
Additionally, we provide an explanation of the machine
learning architectures tested, including pre-trained neural
networks and the proposed CNN. In section III, we report
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on the experimental results and the comparison between
the multiple machine learning models employed. In section
IV, we discuss the achieved results in light of the associ-
ated literature, and in section V we illustrate the proposed
approach’s main strengths and limitations, concluding with
possible future developments.

II. MATERIALS AND METHODS
This section provides a detailed description of the experi-
mental pipeline employed in this study, which is graphically
depicted in Figure 1 using a block diagram that describes
the overall architecture. The experimental pipeline involves
four blocks, with the first two blocks, characterized by black
dashed lines, involving the sampling and windowing of EEG
signals from 32 sensors into 8-second epochs. From each
epoch, EEG bands and features are extracted and represented
in their tabular form. The last two blocks, characterized
by red dashed lines, represent the main contribution of our
work, which involves the rearrangement of EEG tabular
features into a new image-like format that exploits spatial
information. This is achieved by mapping the tabular features
to a two-dimensional grid that resembles an image. This
new representation of EEG signals is then used as input
for an image-based machine learning algorithm for emotion
classification.

A. EXPERIMENTAL DATASET
For this study, two publicly available datasets were used,
both of which involved physiological signal collection
from healthy volunteers undergoing emotional video elici-
tation. Emotion perception was evaluated through the well-
known circumplex model of affect [3], consisting in a bi-
dimensional space: arousal associated with the strength of the
feeling, and valence associated with the pleasantness of the
feeling. Both variables were quantified through a 0-9 Likert-
type scale. As reported in the papers in which the datasets
were presented, prior to the experiment, each participant
signed a consent form.

In this study, trials of both datasets and for both vari-
ables (i.e., arousal and valence) were split into two classes:
high and low. Arousal and valence labels were assigned
separately for all the videos analyzed according to what
was expressed by each subject individually. Consequently,
regarding arousal, trials were separated into high-arousal
(HA, arousal >= 5.5) evoking a strong emotional response,
and low-arousal (LA, arousal <= 4.5), evoking a weak elic-
itation. Regarding valence, trials were separated into high-
valence (HV, valence >= 5.5) evoking a pleasant response,
and low-valence (LV, valence <= 4.5), evoking unpleasant
elicitation. Numerical thresholds were selected to exclude
elements related to neutral responses (i.e., with arousal or
valence in the interval [4.5, 5.5]) from the experimental set,
thus preventing the deep learning model from encountering
ambiguity in the boundary between low and high classes, and
enhancing class separability.

1) The DEAP dataset

The dataset consisted of 32 healthy participants (age range,
19–27 yo; 16 females) [22]. A number of physiologi-
cal signals were gathered, and, in this study, 32-channel
EEG sampled at 512Hz was considered. It is available at
https://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

The experimental protocol consisted of 40 emotional video
trials from famous music videos. After an initial 2min rest-
ing state, 60sec emotional videos, with different levels of
arousal and valence, were presented. Extensive details can
be found at [22].

2) The MAHNOB–HCI dataset

The dataset consisted of 27 healthy participants (age range,
19–40 years; 15 females) [23]. Different trials might involve
a different number of volunteers, ranging from 25 to 27,
because of missing or bad-quality signals. A number of phys-
iological signals were gathered, and, in this study, 32-channel
EEG sampled at 256Hz was considered. It is available at
https://mahnob-db.eu/hci-tagging/.

The experimental protocol consisted of 20 emotional video
trials from famous movies. After an initial 30sec resting
state, emotional videos of varying lengths (between 35 and
177sec), with different levels of arousal and valence, were
presented. Extensive details can be found at [23].

B. EEG PROCESSING AND FEATURE EXTRACTION

The EEG processing procedure was implemented to obtain
artefact-free signals to compute the EEG spectrogram to
be used in the classification task. The processing procedure
comprised frequency filtering, large artefacts rejection, eye
movements and cardiac-field artefact removal, interpolation
of contaminated channels, and average re-referencing [24].
These steps were implemented in MATLAB R2018b (Math-
Works) using the Fieldtrip Toolbox [25]. An extensive de-
scription of the preprocessing procedure applied can be found
in [26].

The EEG power spectral density (PSD) was extracted
through Welch’s method with a Hanning window. A slid-
ing time window 2sec long and with 50% of overlap was
employed, and PSD time series were integrated within four
frequency bands, namely: theta : θ ∈ (4 − 8]Hz,alpha :
α ∈ (8 − 12]Hz, beta : β ∈ (12 − 30]Hz, and gamma :
γ ∈ [30− 45]Hz.

For each time segment corresponding to a classification
instance (i.e., 8sec length, with 2sec of overlap), a set of
EEG channels (i.e., 32) and frequency bands (i.e., 4) were
considered and five features were derived: total PSD; the
three Hjort parameters (i.e., activity, mobility, and complex-
ity [27]); and asymmetry, as the difference between PSD in
channels symmetric with respect to the vertical cerebral axis.
Summarizing, each instance was represented by 640 features
(32 channels × 4 frequency bands × 5 features).
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FIGURE 1: Block diagram of the experimental pipeline. In the first block, the acquired 32-channel EEG time series are divided
into 8-second windows; in the second, EEG features are extracted from each frequency band, then rearranged into images
according to the proposed scheme, and then classified using an image-based classification approach, e.g. CNN.

C. EEG FEATURES SPATIAL ARRANGEMENT

The following EEG-features spatial arrangement scheme has
been designed to allow image-based ML algorithms to ex-
ploit the spatial proximity among electrodes. The main idea is
to build an image-block arranging the EEG features obtained
via the electrodes considering their spatial proximity and then
aggregating the image associated with each feature following
their proximity in the frequency domain.

To incorporate spatial information, a single image-block
was constructed using a single feature and frequency band
(e.g., the α band of the PSD), and the corresponding 1 ×
32 channel vector was transformed into a 2D-image of size
11×9 (Fig. 2.b) that depicts a top view of the subject’s scalp,
where each element corresponds to a specific sensor position
on the scalp. The matrix elements (Fig. 2.b) represent a 2D-
map of the 10-20 EEG sensor international scheme. Non-0
elements correspond to positions occupied by sensors, while
0 elements represent empty positions.

This spatial rearrangement provides clear information to
the classification system about the spatial arrangement of
the input features, enabling the exploitation of electrical pat-
terns localized in different brain regions. The neuroscience
literature [28] suggests that such information should enhance
emotion recognition performance, since human emotions are
closely linked to specific brain regions.

Figure 2 provides an example of an image-block. The
resulting 11 × 9 matrix can be easily transformed into a
grayscale image, as shown in Fig. 2.c. Assuming that all
EEG values are greater than or equal to zero, only the pixels
corresponding to electrode positions are non-white in the

(a) (b)

(c)

FIGURE 2: Spatial localization of the 32-channel EEG in the
10-20 standard schema (a); Spatial rearrangement in an 11x9
matrix (b); interpreted as a grayscale image (i.e., an image-
block) (c)

image. The darker the pixel, the higher the feature value.
At this stage, we obtain 20 2D-matrices of size 11× 9 for

each instance. To obtain the final representation of the EEG
sample, we reshape the 20× 11× 9 matrices into a new 2D-
matrix by placing the 11 × 9 matrices side by side in the
same column for those extracted from the same frequency
band and in the same row for those belonging to the same
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FIGURE 3: Exemplary image obtained exploiting spatial and
frequency proximity.

feature type (Fig. 3). Thus, in each image-block, features are
arranged in rows (i.e., PSD, Activity, Mobility, Complexity,
Asymmetry), and frequency bands are arranged in columns
(i.e., θ, α, β, and γ).

To realistically represent the spatial proximity between
electrodes, EEG features obtained from a single sensor
placed on one side of the scalp (e.g., right) and a particular
frequency band (e.g., β) should not be processed together
with features from the opposite side of the scalp (e.g., left) or
those obtained from a different frequency band (e.g., γ). To
achieve this, the convolutional operations should not process
different image-blocks at the same time, not even partially. To
achieve this separation, each image-block is separated both
horizontally and vertically by a number of white pixels equal
to the width of the filter used in convolutional operations. If
we consider a filter width equal to 3, the size of the image
obtained by rearranging all EEG features would be 67 × 45
pixels.

D. MACHINE LEARNING MODELS
Firstly, we detail the state-of-the-art image-based approaches
implemented in our experiments. Then, we include nine
classical ML approaches for tabular data, i.e., with no spa-
tial information embedded in the inputs. These approaches
have been named tabular-features-based. All of the models
were developed to perform two distinct binary classifications:
the first distinguishing between high-arousal (HA) and low-
arousal (LA) trials, and the second disentangling between
high-valence (HV) and low-valence (LV) trials.

1) Image-based algorithms
Seven different approaches were implemented to evaluate the
image-based classification performance using the procedure
described in section II-C. Initially, we tested several pre-
trained architectures on the ImageNet [16] dataset, includ-
ing MobileNetV2 [19], DenseNet121 [18], ResNet152V2
[29], ResNet50V2 [29], VGG16 [30], and VGG19 [30].
Furthermore, we developed a Convolutional Neural Network
(CNN) [31] architecture from scratch to solve the image-
classification task.

To fine-tune the pre-trained neural networks for the emo-
tion classification datasets, we removed the top classification

layers and added multiple fully-connected layers with the
relu activation function. During training, these newly added
layers were set as trainable, while the remainder of the
architecture was frozen. Each pre-trained neural network had
a similar number of trainable parameters in the added layers.
The last fully connected layer of each architecture comprised
two neurons with the softmax activation function to address
the binary classification problem. The activation of these
neurons is mutually exclusive, meaning that the only possible
outcomes are either 0, 1 or 1, 0.

The other image-based classification approach imple-
mented is based on a CNN. In particular, CNN has been
widely and successively adopted in several image classifica-
tion tasks, even in clinical scenarios [32]. A classic approach
to solve an image classification problem is to train a CNN
from scratch, meaning first defining convolutional layers,
able to extract features from input images, and then adding
dense fully connected layers to perform the final classifica-
tion step; all neurons are usually randomly initialized. Unlike
the pre-trained architectures, CNN was trained as a whole
with the arousal/valence classification input.

6
7
x
4
5

6
7
x
4
5

3
3
x
2
2

3
3
x
2
2

1
1
x
7

32
Conv2D

32
MaxPooling2D

64
Conv2D

64
MaxPooling2D 4928

Flatten
4928

Dropout

512
Dense

2
Dense

FIGURE 4: Visual representation of the CNN model trained
from scratch. Architecture plot provided by Net2Vis [33].

The implemented CNN architecture (Fig. 4), consists of
two convolutional layers, with depths of 32 and 64, respec-
tively, followed by two Max-Pooling layers. As mentioned
above, the size of the convolutional filters was set to 3 × 3.
Subsequently, a flattening layer was inserted to prepare the
data to be classified by the final two dense fully connected
layers, of 512 and 2 neurons, respectively. The last level has
2 neurons due to the number of classes to classify, i.e. the last
layer is composed of a 2 neurons dense layer with SoftMax
activation function, which performs a binary classification
task of the label arousal or valence, so the final output of
the network is a tuple {1, 0} in case of predicting low arousal
or valence, or {0, 1} in case of predicting high arousal or
valence. To prevent overfitting during training, a dropout
layer has been added after the flattening layer.

2) Tabular-Features-based algorithms
The Support Vector Machine (SVM) is the most commonly
used feature-based ML model in affective computing and
emotion recognition tasks. Other widely used approaches
include, but are not limited to, K-Nearest Neighbours (KNN),
Random Forest (RF), Linear Discriminant Analysis (LDA),
Quadratic Discriminant Analysis (QDA), and MultiLayer
Perceptron network (MLP) [34]. In this study, all of the afore-
mentioned algorithms were implemented. Additionally, other
ensemble and boosting-based algorithms, such as Extremely
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Randomized Trees (ET), AdaBoost, and GradientBoosting,
were considered to ensure completeness of the results, as well
as their generally good performance on tabular data.

The SVM algorithm transforms the original feature space
into a higher-dimensional space using a kernel function.
Then, it identifies support vectors to maximize the separation
(margin) between the classes [35]. The algorithm uses these
support vectors to construct hyperplanes that separate the
two classes in a high-dimensional space [35]. ET and RF
are tree-based ensemble methods that use a recursive feature
selection procedure through decision trees until a minimum
subset of data corresponding to a class is identified. The main
difference between them is the selection of cut points to split
nodes: RF performs an optimization procedure to split the
input, while ET does it randomly to achieve convergence in a
shorter period of time [36]. KNN is a lazy learner algorithm
that stores the entire training input and then performs a
classification strategy, assigning to each sample in the test
set the majority class of its K nearest neighbour samples
in the training set. AdaBoost and GradientBoosting are two
boosting-based classification methods that rely on decision
tree ensembling. The AdaBoost algorithm attempts to mini-
mize the loss function related to the classification error and
was designed for binary classification problems. Gradient
Boosting, on the other hand, is used to optimize differen-
tiable loss functions and can be used for both classification
and regression. MLP, implemented as feed-forward neural
networks, is characterized by fast operation, ease of imple-
mentation, and smaller training set requirements [37]. MLP
performs a mapping between classes and input data through a
generally non-linear function whose parameters (or neurons)
are set during training. This makes MLP a very effective and
adaptable approach to various classification problems. The
MLP employed in this study was a 7-layer neural network.
The number of neurons per layer was chosen to feature
comparable computational complexity (i.e., the number of
trainable parameters) with the other pre-trained image-based
architectures. Table 1 lists the number of trainable parameters
for all of the NN-based methods implemented in this study.

Trainable Total

MLP 2.438.138 2.438.138
DenseNet 2.624.002 9.661.506
MobileNetV2 2.689.052 4.947.036
ResNet50 2.458.208 26.023.008
ResNet152 2.458.208 58.331.648
VGG16 2.423.176 22.447.560
VGG19 2.423.176 17.137.864
CNN 2.543.490 2.543.490

TABLE 1: The number of trainable and total parameters of
the neural network models used for the experiments.

3) Implementation details
The classification was performed in a subject-dependent
framework, i.e., in each experiment, the samples belonging to
a single subject were considered. A 10-fold cross-validation

(CV) was applied to each classification task, providing the
value of the CV average accuracy as the reference accuracy
for each subject. Finally, the results from all the subjects
are aggregated, presenting the average and standard deviation
among all of the reference accuracy.

All NN-based models employ the same hyper-parameters:
categorical cross-entropy loss function, consistent with the
classes encoding in one hot encoding; Adam optimizer; the
batch size equal to 16; and early stopping to managing the
number of training epochs, managed with patience set to
8. All the features-based algorithms have been tested with
different parameters setup using nested cross-validation in
order to find the optimal parameters.

III. EXPERIMENTAL RESULTS
A. IMAGE-BASED VS TABULAR-FEATURE-BASED
COMPARISON
Firstly, the accuracy of the image-based ML approaches is
compared with the tabular-features-based ones; then the best
performing model is chosen and its main hyperparameters’
space is explored to compare the obtained classification
performance with the state-of-the-art on the same dataset.
Table 2 summarizes the classification performance of the
implemented models in terms of average accuracy, f1 score,
precision, recall, and area under the receiver operating char-
acteristic curve (AUROC) in the HA-LA, and HV-LV binary
classification tasks.

Based on the results obtained from the MAHNOB-HCI,
it can be observed that the ensemble-based algorithms and
the boosting-based algorithms demonstrate similar results.
However, in comparison to other features-based approaches,
they exhibit the best recognition performance in both the
HA-LA and the HV-LV classification task. Notably, the RF
classifier achieves an accuracy of 72.43% ± 13.24% in HA-
LA and 73.03%± 8.77% in HV-LV, while GradientBoosting
attains an f1 score of 69.07% ± 11.91% in HA-LA and
65.55%± 8.62% in HV-LV. In terms of AUROC score, Gra-
dient Boosting shows superior performances in the arousal
classification task, achieving 76.19%± 11.61%, whereas RF
has the highest performance in valence classification, achiev-
ing 78.40%±9.75%. Overall, it can be concluded that RF has
better performance over tabular-features-based algorithms,
but it suffers more from class imbalance in comparison to
GradientBoosting.

Similar observations can be made for the DEAP dataset,
where ET demonstrates better accuracy performances,
achieving 64.17%± 7.48% in HA-LA and 61.09%± 8.84%
in HV-LV, while GradientBoosting attains better f1 scores,
achieving 55.88%±14.51% in HA-LA and 55.69%±11.81%
in HV-LV.

The proposed image-based approaches show superior
performance when compared to the tabular-features-based
algorithms, with CNN achieving the highest results in
both the arousal and valence classification tasks for both
the MAHNOB-HCI and DEAP datasets. Specifically, on
the MAHNOB-HCI dataset, CNN attains an accuracy of
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MAHNOB
arousal valence

accuracy f1 precision recall AUROC accuracy f1 precision recall AUROC

features
based

AdaBoost 70.41% 66.75% 69.82% 68.13% 72.54% 70.02% 62.43% 65.56% 64.60% 73.24%
GradientBoosting 72.20% 69.07% 71.14% 71.16% 76.19% 72.67% 65.55% 70.72% 67.43% 77.97%
ET 72.10% 65.46% 72.58% 65.43% 75.96% 72.85% 60.12% 74.99% 57.41% 78.29%
RF 72.43% 67.53% 72.71% 68.44% 75.82% 73.03% 62.34% 72.54% 61.67% 78.40%
KNN 54.89% 51.65% 57.53% 60.05% 64.11% 56.29% 54.93% 53.37% 68.21% 65.54%
SVM 67.71% 62.58% 67.60% 63.14% 70.10% 66.98% 55.44% 64.77% 54.08% 69.61%
LDA 64.40% 60.50% 61.80% 62.33% 64.69% 61.73% 55.66% 54.50% 59.72% 62.46%
QDA 62.67% 36.01% 29.26% 47.62% 50.04% 60.47% 21.10% 16.40% 29.63% 50.00%
MLP 66.98% 61.59% 65.42% 63.04% 69.67% 66.74% 56.61% 60.99% 58.88% 69.44%

image
based

CNN 96.77% 96.20% 96.33% 96.30% 99.26% 97.42% 97.21% 97.49% 97.05% 99.49%
DenseNet121 84.82% 78.75% 79.72% 79.45% 89.12% 82.51% 75.94% 75.79% 77.42% 87.22%
MobileNetV2 84.92% 78.20% 78.32% 79.56% 87.49% 83.41% 77.77% 78.25% 79.09% 87.78%
ResNet152V2 82.68% 75.40% 75.20% 77.31% 85.59% 82.77% 77.79% 78.12% 78.75% 87.93%
ResNet50V2 83.34% 76.28% 76.52% 77.70% 85.89% 83.73% 77.39% 77.52% 78.31% 88.23%
VGG16 75.72% 65.23% 64.50% 68.93% 78.48% 74.28% 64.06% 64.16% 66.62% 79.54%
VGG19 73.23% 59.87% 59.90% 63.70% 74.30% 70.85% 60.72% 61.73% 63.47% 76.67%

DEAP
arousal valence

accuracy f1 precision recall AUROC accuracy f1 precision recall AUROC

features
based

AdaBoost 60.14% 54.13% 55.72% 54.19% 60.21% 58.53% 54.28% 55.16% 55.10% 59.09%
GradientBoosting 62.49% 55.88% 58.37% 56.06% 63.17% 60.26% 55.69% 57.32% 56.24% 61.89%
ET 64.17% 52.39% 57.53% 52.50% 63.33% 61.09% 53.10% 58.58% 51.61% 60.89%
RF 63.97% 54.05% 58.52% 53.70% 64.03% 60.92% 54.35% 58.55% 53.27% 61.78%
KNN 45.50% 44.11% 50.98% 56.49% 55.65% 47.92% 48.52% 49.78% 59.81% 54.44%
SVM 61.32% 54.99% 56.39% 55.40% 60.18% 58.96% 54.14% 55.16% 54.45% 59.25%
LDA 57.77% 53.51% 53.34% 55.14% 57.19% 56.39% 53.20% 53.28% 54.31% 56.97%
QDA 61.62% 33.97% 28.30% 43.66% 50.14% 57.88% 32.26% 27.77% 40.60% 50.07%
MLP 60.18% 52.70% 53.38% 54.72% 60.07% 58.25% 52.79% 53.17% 55.14% 58.36%

image
based

CNN 88.68% 89.53% 89.25% 90.11% 94.48% 88.03% 89.28% 89.31% 89.47% 94.45%
DenseNet121 76.82% 75.71% 74.13% 78.56% 77.28% 72.86% 74.84% 72.95% 78.34% 77.03%
MobileNetV2 77.23% 77.25% 75.58% 79.84% 78.94% 72.93% 75.19% 73.18% 78.70% 77.84%
ResNet152V2 75.81% 75.62% 73.83% 78.71% 76.66% 72.42% 74.69% 72.41% 78.53% 77.18%
ResNet50V2 76.63% 77.07% 75.55% 79.71% 77.62% 72.60% 74.43% 72.48% 78.02% 77.48%
VGG16 70.98% 67.88% 64.73% 74.06% 66.73% 66.15% 67.75% 64.06% 74.28% 66.82%
VGG19 70.54% 67.72% 64.36% 74.89% 64.78% 63.86% 65.34% 60.34% 73.94% 63.23%

TABLE 2: Performance results for the tabular-features-based algorithms and image-based algorithms for the subject-dependent
HA-LA, and HV-LV classification tasks on MAHNOB-HCI and DEAP dataset.

96.77% ± 2.24% and 97.42% ± 2.01%, which is signif-
icantly higher than the best results obtained by tabular-
features-based algorithms, which were 72.43% and 73.03%,
respectively. The difference in accuracy between the two
methods is 24.34% and 24.39%, highlighting the impact of
the proposed input rearrangement. Similarly, on the DEAP
dataset, CNN attains an accuracy of 88.68% ± 3.59% and
88.03% ± 3.12%, with a difference of 24.51% and 26.94%
when compared to the tabular-features-based approaches. In
this case, the classification of valence level benefits more
from the proposed input representation than the classification
of arousal.

Regarding the other image-based methods, including
DenseNet121, MobileNetV2, ResNet, and VGG, it can be
observed that all of them achieve similar performances in
both datasets compared to the ones achieved by CNN, with
MobileNetV2 demonstrating higher performance in all the
classification tasks when compared to the others. This is par-
ticularly interesting, as MobileNetV2 has a smaller number
of total parameters than the other methods, indicating its

potential for efficient image-based classification.
In summary, our results confirm that the proposed input

representation effectively incorporates valuable information
for the emotion classification task. This leads to improved
classification performance compared to any other feature-
based approaches that were tested.

B. HYPER-PARAMETRIZATION
At this point, the best-performing approach (CNN) is investi-
gated further by exploring the space of its hyper-parameters:
batch size, early stopping patience, and optimizer. For each
of these parameters, different settings were tested: Results
of the configurations implemented are summarized in Fig.
5. Adam optimizer outperforms RMSprop for the HA-LA
classification problem, whereas the opposite happens for the
HV-LV classification.

Regarding the other two hyper-parameters, patience and
batch size, a trend can be seen whereby increasing pa-
tience and decreasing batch size improve results up to the
configuration of patience 32 and batch size 4, with which
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(a) arousal

(b) valence

FIGURE 5: Heatmap showing the hyperparametrization re-
sults in terms of % accuracy of the proposed CNN varying
the patience, batch size and optimizer for the two selected
datasets, DEAP and MAHNOB-HCI, and the two binary
classification tasks, arousal and valence.

91% accuracy on DEAP, and 97.8% on MAHNOB-HCI are
reached for the HA-LA discrimination task. The same pattern
can be seen in the HV-LV classification results, where the
best results are obtained with the RMSprop optimizer and
patience equal to 32, while varying the batch size appears to
have no effect.

C. COMPARISON WITH THE STATE-OF-THE-ART
The performance of the CNN with the best hyper-
parameterization is compared with the current state-of-the-
art, as shown in Table 3. The approach proposed in this
study outperforms the state-of-the-art on both MAHNOB-
HCI and DEAP datasets, with the exception of the DEAP
HV-LV recognition task, where [38], [39] achieved compa-
rable performance. Zhang et al. [40] propose a hierarchical
fusion convolutional neural network to integrate information
coming from different modalities, i.e., EEG and other physio-
logical signals, to classify emotions. However, in their study,
the authors neglected the EEG spatial information, resulting
in lower performances compared to this study, which only
considered EEG as the information source. Piho et al. [41]
achieved good recognition performance, thanks to a non-
trivial human-driven processing procedure. Specifically, the
authors proposed a feature extraction and selection process

in two separate steps via a trial and error process. However,
this procedure has to be repeated for each new dataset, as
it is not possible to determine the optimal subset of features
and channels in advance. Therefore, the optimal subset of ex-
tracted features-selected features must be determined through
a complex search, as explained by Piho et al. [41].

The fact that the approach presented in this study out-
performs the one in [41] may suggest that the EEG spa-
tial information, which was not taken into consideration in
[41], is actually relevant for the classification problem. The
proposed approach employs a small CNN with only two
convolutional layers, which automatically performs all the
tasks of feature selection, feature learning, and classification,
thus being trainable for each dataset in a simple manner.

The approach introduced by Lin et al. [20] relies on an
end-to-end fine-tuning of a big CNN such as AlexNet,
which was pre-trained on the Imagenet dataset. However, the
main difference with the proposed approach is that the EEG-
derived grayscale image does not consider spatial informa-
tion. Furthermore, six different EEG images are built from
each EEG signal, one for each band frequency, and fed to
the network separately. Salama et al. [21] propose an image-
based model that exploits a three-dimensional CNN (3D-
CNN). This representation is similar to the one proposed by
Lin et al. [20], but it also considers the time-domain feature
representation. Instead, Yin et al. [38] propose a different
approach based on graph-CNN and long short-term memory
-NN. An interesting aspect of their study is the use of graph-
CNN to model EEG inter-channel relations, which should
have the added value of exploiting deeper information than
the simple spatial localization of the electrodes.

Our approach outperforms the one proposed by Yin et al.
[38] for the arousal-classification problem (0.4% higher) and
has comparable performance on the valence-levels classifica-
tion problem. However, since they did not provide a standard
deviation for their results, it is impossible to determine which
approach actually offers better performance.

Zhang and colleagues propose a new approach in [39] that
is based on heterogeneous convolutional neural networks and
multimodal factorized bilinear pooling. This approach con-
structs a neural network ensemble to classify emotions from a
multimodal input that includes EEG and other physiological
signals. Compared to our study, Zhang et al. achieved lower
performance on the MAHNOB-HCI dataset, and comparable
results, which were slightly higher, on DEAP. However, it
is worth noting that the comparison with our approach may
not be entirely fair, since the authors of [39] did not consider
the spatial relationship between the EEG sensors and also
included other information sources.

IV. DISCUSSION
In this study, we propose a novel approach for emotion recog-
nition tasks by rearranging EEG-based dynamical features as
images, resulting in a new input representation. The approach
focuses on converting traditional EEG feature-based classifi-
cation problems into image-based ones, enabling algorithms
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MAHNOB-HCI

arousal valence

*Zhang et al. [40] 88.28% 89%
*Zhang et al. [39] 90.37% 90.50%
Piho et al. [41] 94% 94.6%
Our approach 97.8%±1.8% 98.3%±1.9%

DEAP

arousal valence

*Zhang et al. [40] 83.28% 84.71%
Lin et al. [20] 87.3% 85.5%
Salama et al. [21] 88.5% 87.4%
Piho et al. [41] 89.8% 89.6%
Yin et al. [38] 90.6% 90.4%
*Zhang et al. [39] 93.22% 90.46%
Our approach 91%±4.1% 90.4%±3.3%

TABLE 3: Comparison between the performances achieved
by the current state-of-the-art approaches in the subject-
dependent HA-LA and HV-LV classification task and the
proposed method.
* Multimodal architectures based on EEG and other physio-
logical signal

to exploit the spatial information associated with electrode
placement. The proposed input representation allows for the
use of well-established image recognition approaches such
as pre-trained deep neural networks and convolutional neural
networks, which can use spatially informed inputs to solve
the emotion recognition task.

The proposed approach has been evaluated using two
benchmark publicly-available datasets, namely DEAP and
MAHNOB-HCI, These datasets consist of data collected
from healthy participants with different age ranges and exper-
imental protocols, involving various emotional stimuli, rest-
ing states, and labelling procedures. Despite the differences
between the datasets, the proposed approach demonstrates
high performance on both, indicating its potential for gen-
eralization. However, it is worth noting that both datasets
share the same EEG sensor arrangement, with 32 channels
placed according to the international 10-20 system. Table
2 demonstrates the superior performance of image-based
approaches over tabular-feature-based ones in discriminating
affective states. Among these approaches, ET, RF, and Gra-
dientBoosting (see Tab. 2) are the most effective due to their
utilization of powerful decision tree ensembles and recursive
feature selection algorithms [36], enabling them to exploit the
informative nature of the dataset. While ET and RF result in
better overall performance, GradientBoosting is more adept
at handling class imbalance, as indicated by its superior
F1 score. All image-based approaches outperformed feature-
based ones, underscoring the competitive advantages offered
by arranging EEG features into an image representation and
using image-based classification models.

The effectiveness of the proposed approach is further
illustrated by the maximum accuracy scores attained by an
image-based method. Specifically, a simple CNN with two

convolutional layers trained from scratch achieved 96.77%
and 97.42% accuracy in arousal and valence detection, re-
spectively, for MAHNOB-HCI, and 88.68% and 88.03%
accuracy in arousal and valence detection, respectively, for
DEAP. Moreover, as shown in Table 2, the proposed CNN
outperformed other models in terms of F1 score, AUROC,
precision, and recall, successfully addressing the class imbal-
ance problem. With further hyper-parametrization, the simple
model achieved even higher accuracy rates, with 97.8% and
98.3% accuracy in arousal and valence detection, respec-
tively, for MAHNOB-HCI, and 91% and 90.4% accuracy in
arousal and valence detection, respectively, for DEAP (see
Table 3). The proposed approach outperforms the majority of
existing approaches in the literature, particularly those that
do not rely on EEG spatial information [20], [21], [40], [41].

The limitations of the current study are rooted in the
fact that the proposed approach is solely based on a re-
arrangement of EEG features. This is in contrast to the
results achieved by Zhang et al. [39], which emphasize the
importance of utilizing multimodal physiological data for
emotion recognition. Therefore, future developments could
potentially integrate brain-heart interplay features to combine
the EEG dynamics with cardiovascular data [42], or adopt a
neural network-based fusion strategy [39] to merge different
signals while preserving the spatial features’ arrangement.

V. CONCLUSION
In conclusion, our study confirms the significance of spatial
information in EEG analysis and recommends its inclusion
in EEG-based emotion recognition tasks. Furthermore, tran-
sitioning from feature-based to image-based classification
would enable explainability algorithms to provide physio-
logically plausible insights into the informative features that
contribute the most to a given classification [43]. These
explainable artificial intelligence approaches are crucial for
clinicians and technicians to validate the algorithm’s out-
comes and enhance the decision-making process.

Given the promising results of this study, future research
should concentrate on subject-independent frameworks, as
well as emotion recognition tasks that enable a finer sampling
of arousal and valence space. Additionally, an interesting
research direction could be to integrate the two approaches
to leverage all the relations between the EEG electrodes,
including the ones that can be extracted with graphs [44],
such as the correlation between channels’ activity, and the
spatial ones, that can be simply provided with an image fea-
ture rearrangement. Finally, future research will explore the
impact of different EEG sensor arrangements and densities
on emotion recognition tasks.
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